Previous |  Up |  Next

Article

Title: Boundary value problems for coupled systems of second order differential equations with a singularity of the first kind: explicit solutions (English)
Author: Jódar, Lucas
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 1
Year: 1994
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method. (English)
Keyword: Coupled differential system
Keyword: boundary value problem
Keyword: singularity of the first kind
Keyword: Moore-Penrose pseudo-inverse
MSC: 34A05
MSC: 34B05
idZBL: Zbl 0795.34011
idMR: MR1254743
DOI: 10.21136/AM.1994.134239
.
Date available: 2009-09-22T17:42:21Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134239
.
Reference: [1] S. L. Campbell and C. D. Meyer, jr.: Generalized inverses of linear transformations.Pitman Pubs. Co., 1979.
Reference: [2] I. S. Gradshteyn and I. M. Ryzhik: Table of integrals, series and products.Academic Press, 1980. MR 1773820
Reference: [3] L. Jódar: Boundary value problems and Cauchy problems for the second order Euler operator differential equation.Linear Algebra Appls. 91 (1987), 1–12. MR 0888475
Reference: [4] L. Jódar: Explicit solutions of two-point boundary value problems.Math. Zeitschrift 199 (1988), 555–564. MR 0968321, 10.1007/BF01161644
Reference: [5] L. Jódar: On the Euler differential equation $A_2 t^2 X^{\prime \prime }+tA_1 X^{\prime }+A_0 X=0$.Applied Maths. Letters 2(3) (1989), 233–237. MR 1013885
Reference: [6] H. B. Keller and A. W. Wolfe: On the nonunique equilibrium states and buckling mechanism of spherical shells.J. Soc. Indust. Applied Maths. 13 (1965), 674–705. MR 0183174, 10.1137/0113045
Reference: [7] P. Lancaster and M. Tismenetsky: The theory of matrices.Academic Press, second ed., 1985. MR 0792300
Reference: [8] : MACSYMA.MACSYMA Symbolics Inc., 1989. Zbl 0745.33007
Reference: [9] C. B. Moler: MATLAB user’s guide.Technical Report CS81-1 (1980), Computer Sci. Department, Univ. of New Mexico, Alburquerque.
Reference: [10] J. M. Ortega: Numerical analysis, a second course.Academic Press, 1972. Zbl 0248.65001, MR 0403154
Reference: [11] C. R. Rao and S. K. Mitra: Generalized inverse of matrices and its applications.John-Wiley, 1971. MR 0338013
Reference: [12] P. Rentrop: Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie.TUM, Institut für Mathematik, München, 1977.
Reference: [13] E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind.SIAM J. Math. Anal. 15 (1984), 287–307. 10.1137/0515023
.

Files

Files Size Format View
AplMat_39-1994-1_1.pdf 1.782Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo