Previous |  Up |  Next

Article

Title: Finite element solution of a hyperbolic-parabolic problem (English)
Author: Hlavička, Rudolf
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 3
Year: 1994
Pages: 215-239
Summary lang: English
.
Category: math
.
Summary: Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space $C(\overline{I},V)$ is proved. (English)
Keyword: Rothe's method
Keyword: finite elements.
Keyword: Euler’s backward formula
Keyword: linear parabolic or hyperbolic equations
Keyword: convergence
MSC: 65M12
MSC: 65M20
MSC: 65M60
MSC: 65N30
idZBL: Zbl 0812.65087
idMR: MR1273634
DOI: 10.21136/AM.1994.134254
.
Date available: 2009-09-22T17:43:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134254
.
Reference: [1] Demerdash, N.A., Gillot, D.H.: A new approach for determination of eddy current and flux penetration in nonlinear ferromagnetic materials.IEEE Trans. MAG-10 (1974), 682–685.
Reference: [2] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie, Berlin, 1974. MR 0636412
Reference: [3] Hannalla, A.Y., Macdonald, D.C.: Numerical analysis of transient field problems in electrical machines.Proc. IEE 123 (1976), 893–898.
Reference: [4] Kačur, J.: Method of Rothe in Evolution Equations.Teubner-Texte zur Mathematik, Band 80, Leipzig, 1985. MR 0834176
Reference: [5] Lütke-Daldrup, B.: Numerische Lösung zweidimensionaler nichtlinearer instantionärer Feld- und Wirbelstromprobleme.Archiv für Elektrotechnik 68 (1985), 223–228. 10.1007/BF01575911
Reference: [6] Melkes, F., Zlámal M.: Numerical solution of nonlinear quasistationary magnetic fields.Internat. J. Numer. Methods Engineering 19 (1983), 1053–1062. 10.1002/nme.1620190709
Reference: [7] Zlámal, M.: Curved elements in the finite element method.I. SIAM J. Numer. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022
Reference: [8] Zlámal, M.: Finite element solution of quasistationary nonlinear magnetic field.RAIRO Anal. Numér. 16 (1982), 161–191. MR 0661454, 10.1051/m2an/1982160201611
Reference: [9] Ženíšek A.: Finite element variational crimes in parabolic-elliptic problems.Numer. Math. 55 (1989), 343–376. MR 0993476, 10.1007/BF01390058
Reference: [10] Ženíšek, A.: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
.

Files

Files Size Format View
AplMat_39-1994-3_4.pdf 2.352Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo