Previous |  Up |  Next

Article

Title: Biquadratic splines interpolating mean values (English)
Author: Kobza, Jiří
Author: Mlčák, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 5
Year: 1994
Pages: 339-356
Summary lang: English
.
Category: math
.
Summary: Continuity conditions for a biquadratic spline interpolating given mean values in terms of proper parameters are given. Boundary conditions determining such a spline and the algorithm for computing local parameters for the given data are studied. The notion of the natural spline and its extremal property is mentioned. (English)
Keyword: splines
Keyword: biquadratic splines
Keyword: mean value interpolation
MSC: 41A15
MSC: 41A63
MSC: 65D05
idZBL: Zbl 0821.41012
idMR: MR1288147
DOI: 10.21136/AM.1994.134263
.
Date available: 2009-09-22T17:44:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134263
.
Reference: [1] C. de Boor: A practical guide to splines.Springer Verlag, New York, 1978. Zbl 0406.41003, MR 0507062
Reference: [2] J. Kobza: On algorithms for parabolic splines.Acta UPO, FRN, Math. XXIV 88 (1987), 169–185. Zbl 0693.65005, MR 1033338
Reference: [3] J. Kobza: Some properties of interpolating quadratic spline.Acta UPO, FRN, Math. XXIX 97 (1990), 45–63. Zbl 0748.41006, MR 1144830
Reference: [4] J. Kobza: Quadratic splines interpolating derivatives.Acta UPO, FRN, Math. XXX 100, 219–233. Zbl 0758.41005, MR 1166439
Reference: [5] J. Kobza: An algorithm for biparabolic spline.Appl. Math. 32(5) (1987), 401–413. Zbl 0635.65006, MR 0909546
Reference: [6] J. Kobza: Quadratic splines smoothing the first derivatives.Appl. Math. 37(2) (1992), 149–156. Zbl 0757.65006, MR 1149164
Reference: [7] J. Kobza, D. Zápalka: Natural and smoothing quadratic spline.Appl. Math. 36(3) (1991), 187–204. MR 1109124
Reference: [8] G. Maess: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature.Numerical methods and applications ’84, Sofia, 1985, pp. 75–81.
Reference: [9] J. S. Zavjalov, B. I. Kvasov, V. L. Mirosnicenko: The methods of spline functions (in Russian).Nauka, Moscow, 1980. MR 0614595
.

Files

Files Size Format View
AplMat_39-1994-5_2.pdf 1.905Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo