Title:
|
Biquadratic splines interpolating mean values (English) |
Author:
|
Kobza, Jiří |
Author:
|
Mlčák, Jan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
39 |
Issue:
|
5 |
Year:
|
1994 |
Pages:
|
339-356 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Continuity conditions for a biquadratic spline interpolating given mean values in terms of proper parameters are given. Boundary conditions determining such a spline and the algorithm for computing local parameters for the given data are studied. The notion of the natural spline and its extremal property is mentioned. (English) |
Keyword:
|
splines |
Keyword:
|
biquadratic splines |
Keyword:
|
mean value interpolation |
MSC:
|
41A15 |
MSC:
|
41A63 |
MSC:
|
65D05 |
idZBL:
|
Zbl 0821.41012 |
idMR:
|
MR1288147 |
DOI:
|
10.21136/AM.1994.134263 |
. |
Date available:
|
2009-09-22T17:44:55Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134263 |
. |
Reference:
|
[1] C. de Boor: A practical guide to splines.Springer Verlag, New York, 1978. Zbl 0406.41003, MR 0507062 |
Reference:
|
[2] J. Kobza: On algorithms for parabolic splines.Acta UPO, FRN, Math. XXIV 88 (1987), 169–185. Zbl 0693.65005, MR 1033338 |
Reference:
|
[3] J. Kobza: Some properties of interpolating quadratic spline.Acta UPO, FRN, Math. XXIX 97 (1990), 45–63. Zbl 0748.41006, MR 1144830 |
Reference:
|
[4] J. Kobza: Quadratic splines interpolating derivatives.Acta UPO, FRN, Math. XXX 100, 219–233. Zbl 0758.41005, MR 1166439 |
Reference:
|
[5] J. Kobza: An algorithm for biparabolic spline.Appl. Math. 32(5) (1987), 401–413. Zbl 0635.65006, MR 0909546 |
Reference:
|
[6] J. Kobza: Quadratic splines smoothing the first derivatives.Appl. Math. 37(2) (1992), 149–156. Zbl 0757.65006, MR 1149164 |
Reference:
|
[7] J. Kobza, D. Zápalka: Natural and smoothing quadratic spline.Appl. Math. 36(3) (1991), 187–204. MR 1109124 |
Reference:
|
[8] G. Maess: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature.Numerical methods and applications ’84, Sofia, 1985, pp. 75–81. |
Reference:
|
[9] J. S. Zavjalov, B. I. Kvasov, V. L. Mirosnicenko: The methods of spline functions (in Russian).Nauka, Moscow, 1980. MR 0614595 |
. |