Previous |  Up |  Next

Article

Title: Double points on characteristics (English)
Title: Doppelpunkte auf Charakteristiken (German)
Author: Röschel, Otto
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 5
Year: 1995
Pages: 381-390
Summary lang: English
.
Category: math
.
Summary: Double Points on Characteristics. A fixed surface $\Phi $ of a moving space $\Sigma $ will envelope a surface of the fixed space $\Sigma ^{\prime }$, if we move $\Sigma $ with respect to $\Sigma ^{\prime }$. In the general case at each moment of the one-parameter motion there exists a curve $c$ on $\Phi $, along which the position of $\Phi $ and the enveloped surface are in contact. In the paper we study the interesting special case, where $c$ has some double point $P\in \Phi $. This depends on relations between differential geometric properties in the neighbourhood of $P$ of the moved surface and the instantaneous motion of the one-parameter motion. These properties are characterized in this paper. Then some further kinematic results for the characterized motions are shown. (English)
Keyword: kinematics
Keyword: characteristics
Keyword: enveloped surfaces
MSC: 53A17
idZBL: Zbl 0842.53008
idMR: MR1342367
DOI: 10.21136/AM.1995.134301
.
Date available: 2009-09-22T17:49:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134301
.
Reference: [1] O. Bottema, B. Roth: Theoretical Kinematics.North-Holland, Amsterdam, 1979. MR 0533960
Reference: [2] H. Brauner: Lehrbuch der Konstruktiven Geometrie.Springer, Wien-New York, 1986. Zbl 0581.51018, MR 0833284
Reference: [3] K.H. Hunt: Screw Systems in Spatial Kinematics.MMERS3, Dept. of Mech. Eng., Monash University, 1970.
Reference: [4] A. Karger, J. Novák: Space Kinematics and Lie Groups.Gordon and Breach, New York, 1985. MR 0801394
Reference: [5] E. Kruppa: Analytische und konstruktive Differentialgeometrie.Springer, Wien, 1957. Zbl 0077.15401, MR 0086326
Reference: [6] O. Röschel: Drehflächen zweiter Ordnung durch einen Kegelschnitt.Studia Sci. Math. Hung. 29 (1994), 379–386. MR 1304891
Reference: [7] O. Röschel: Eine interessante Famile von Drehquadriken.Grazer Math. Ber. 313 (1991), 45–56. MR 1143619
.

Files

Files Size Format View
AplMat_40-1995-5_4.pdf 975.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo