Previous |  Up |  Next

Article

Keywords:
Rossby waves; caustics; turning points; Lagrange manifold; WKB
Summary:
Rossby wave equations characterize a class of wave phenomena occurring in geophysical fluid dynamics. One technique useful in the analysis of these waves is the geometrical optics, or multi-dimensional WKB technique. Near caustics, e.g., in critical regions, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to study Rossby waves near caustics.
References:
[1] J. B. Keller: A geometrical theory of diffraction in Calculus of Variations and Its Applications. vol. VIII, Proc. Symp. Appl. Math., ed. L. M. Graves, McGraw-Hill, New York, 1958. MR 0094120
[2] D. J. Karoly, B. J. Hoskins: Three dimensional propagation of planetary waves. J. Meteor. Soc. Japan. 60 (1982), 109–123. DOI 10.2151/jmsj1965.60.1_109
[3] H. Yang: Wave Packets, Their Bifurcation in Geophysical Fluid Dynamics. Springer-Verlag, New York, 1991. MR 1077832
[4] C. Knessl, J. B. Keller: Rossby waves. Stud. Apl. Math. 94 (1995), 359–376. DOI 10.1002/sapm1995944359 | MR 1330881
[5] D. J. Karoly: Rossby wave propagation in a barotropic atmosphere. Dyn. Oceans and Atmos. 7 (1983), 111–125.
[6] V. G. Gnevyshev, V. I. Shira: Monochromatic Rossby wave transformation in zonal critical layers. Izv. Atmos. Ocean Phys. 25 (1989), 628–635. MR 1083856
[7] H. Yang: Evolution of a Rossby wave packet in barotropic flows with asymmetric basic current, topography and $\delta $-effect. J. Atmos. Sci. 44 (1987), 2267–2276. DOI 10.1175/1520-0469(1987)044<2267:EOARWP>2.0.CO;2
[8] V. I. Arnol’d: Characteristic class entering in quantification conditions. Funct. Anal. Appl. 1 (1967), 1–13. DOI 10.1007/BF01075861 | MR 0211415
[9] V. P. Maslov: Theorie des Perturbationes et Methodes Asymptotique. Dunod, Gauthier-Villars, Paris, 1972.
[10] A. D. Gorman: Space-Time caustics. Int. J. Math. and Math. Sci. 9 (1986), 531–540. DOI 10.1155/S0161171286000662 | MR 0859121 | Zbl 0613.34046
[11] A. D. Gorman: Vector fields near caustics. J. Math. Phys. 26 (1985), 1404–1407. DOI 10.1063/1.526954 | MR 0790091 | Zbl 0568.58018
[12] K. C. Chen: Asymptotic theory of wave propagation in spatial and temporal dispersive inhomogeneous media. J. Math. Phys. 12 (1971), 743–753. DOI 10.1063/1.1665643 | MR 0287799
Partner of
EuDML logo