[2] V. Barbu: 
Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976. 
MR 0390843 | 
Zbl 0328.47035[3] H. Brézis: 
Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973. 
MR 0348562[5] P. Colli, G. Gilardi and M. Grasselli: 
Global smooth solution to the standard phase-field model with memory. Adv. Differential Eqations 2 (1997), 453–486. 
MR 1441852[6] P. Colli, G. Gilardi and M. Grasselli: 
Well-posedness of the weak formulation for the phase-field model with memory. Adv. Differential Equations 2 (1997), 487–508. 
MR 1441853[7] P. Colli, G. Gilardi and M. Grasselli: 
Asymptotic analysis of a phase-field model with memory for vanishing time relaxation. Hiroshima Math. J. 29 (1999), 117–143. 
DOI 10.32917/hmj/1206125157 | 
MR 1679579[8] A. Damlamian, N. Kenmochi and N. Sato: 
Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation. Nonlinear Anal. 23 (1994), 115–142. 
DOI 10.1016/0362-546X(94)90255-0 | 
MR 1288502[9] P. Fernandes, G. Gilardi: 
Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997), 957–991. 
DOI 10.1142/S0218202597000487 | 
MR 1479578[10] G. J. Fix: 
Phase field models for free boundary problems. In: Free boundary problems: theory and applications; vol II, A. Fasano and M. Primicerio (eds.), Pitman Res. Notes Math. Ser. 79, Longman, London, 1983, pp. 580–589. 
Zbl 0518.35086[11] L. D.  Landau, E. M. Lifshitz: 
Statistical Physics. Addison-Wesley Publishing, Reading, Massachusetts, 1958. 
MR 0136378[12] J. L. Lions: 
Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars, Paris, 1969. 
MR 0259693 | 
Zbl 0189.40603[14] G. Savaré, A. Visintin: 
Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Natur. Rend. Lincei IX 8 (1997), 49–89. 
MR 1484545[16] J. Simon: 
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. IV 146 (1987), 65–96. 
MR 0916688