Previous |  Up |  Next

Article

Title: Some estimates for the oscillation of the deformation gradient (English)
Author: Mošová, Vratislava
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 6
Year: 2000
Pages: 401-410
Summary lang: English
.
Category: math
.
Summary: As a measure of deformation we can take the difference $D\vec{\phi }-R$, where $D\vec{\phi }$ is the deformation gradient of the mapping $\vec{\phi }$ and $R$ is the deformation gradient of the mapping $\vec{\gamma }$, which represents some proper rigid motion. In this article, the norm $\Vert D\vec{\phi }-R\Vert _{L^p(\Omega )}$ is estimated by means of the scalar measure $e(\vec{\phi })$ of nonlinear strain. First, the estimates are given for a deformation $\vec{\phi }\in W^{1,p}(\Omega )$ satisfying the condition $\vec{\phi }\big |_{\partial \Omega } = \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$. Then we deduce the estimate in the case that $\vec{\phi }(x)$ is a bi-Lipschitzian deformation and $\vec{\phi }\big |_{\partial \Omega } \ne \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$. (English)
Keyword: hyperelastic material
Keyword: deformation gradient
Keyword: strain tensor
Keyword: matrix and spectral norms
Keyword: bi-Lipschitzian map
MSC: 35Q72
MSC: 73G05
MSC: 74B20
idZBL: Zbl 1002.74011
idMR: MR1800961
DOI: 10.1023/A:1022340215798
.
Date available: 2009-09-22T18:04:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134448
.
Reference: [1] P. G. Ciarlet: Mathematical Elasticity.North-Holland, Amsterdam, 1988. Zbl 0648.73014, MR 0936420
Reference: [2] F. John: Bounds for Deformations in Terms of Average Strains.In: Inequalities III (O. Shisha, ed.), Academic Press, New York, 1972. Zbl 0292.53003, MR 0344392
Reference: [3] R. V. Kohn: New integral estimates for deformation in terms of their nonlinear strains.Arch. Rational Mech. Anal. 78 (1982), 131–172. MR 0648942, 10.1007/BF00250837
Reference: [4] A. I. Koshelev: The weighted Korn inequality and some iteration processes for quasilinear elliptic systems.Dokl. Akad. Nauk SSSR 271 (1983), 1056–1059. MR 0722019
Reference: [5] J. Nečas, I. Hlaváček: Introduction to Mathematical Theory of Elastic and Elastoplastic Bodies.SNTL, Praha, 1983 (in Czech).
.

Files

Files Size Format View
AplMat_45-2000-6_1.pdf 321.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo