Previous |  Up |  Next

Article

Title: Bounds and estimates on the effective properties for nonlinear composites (English)
Author: Wall, Peter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 6
Year: 2000
Pages: 419-437
Summary lang: English
.
Category: math
.
Summary: In this paper we derive lower bounds and upper bounds on the effective properties for nonlinear heterogeneous systems. The key result to obtain these bounds is to derive a variational principle, which generalizes the variational principle by P. Ponte Castaneda from 1992. In general, when the Ponte Castaneda variational principle is used one only gets either a lower or an upper bound depending on the growth conditions. In this paper we overcome this problem by using our new variational principle together with the bounds presented by Lukkassen, Persson and Wall in 1995. Moreover, we also present some examples where the bounds are so tight that they may be used as a good estimate of the effective behavior. (English)
Keyword: homogenization
Keyword: effective properties
Keyword: variational methods
Keyword: nonlinear composites
MSC: 35B27
MSC: 73B27
MSC: 74Q20
idZBL: Zbl 0996.74062
idMR: MR1800963
DOI: 10.1023/A:1022381416707
.
Date available: 2009-09-22T18:05:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134450
.
Reference: [1] A. Braides, D. Lukkassen: Reiterated homogenization of integral functionals.Math.  Models Methods Appl.  Sci, to appear. MR 1749689
Reference: [2] P. Ponte  Castaneda: Bounds and estimates for the properties of nonlinear heterogeneous systems.Philos. Trans. Roy. Soc. London Ser.  A. 340 (1992), 531–567. Zbl 0776.73062, MR 1192288, 10.1098/rsta.1992.0079
Reference: [3] P. Ponte  Castaneda: A new variational principle and its application to nonlinear heterogeneous systems.SIAM J.  Appl. Math. 52 (1992), 1321–1341. Zbl 0759.73064, MR 1182126, 10.1137/0152076
Reference: [4] G. Dal  Maso: An Introduction to $\Gamma $-convergence.Birkhäuser, Boston, 1993. Zbl 0816.49001, MR 1201152
Reference: [5] I. Ekeland, R. Temam: Convex analysis and variational problems. Studies in Mathematics and Its Applications, Vol. 1.North-Holland, Amsterdam, 1976. MR 0463994
Reference: [6] V. V. Jikov, S. M. Kozlov and O. A. Oleinik: Homogenization of Differential Operators and Integral Functionals.Springer-Verlag, Berlin-Heidelberg-New York, 1994. MR 1329546
Reference: [7] D. Lukkassen: Formulae and bounds connected to optimal design and homogenization of partial differential operators and integral functionals.(1996), Ph. D. Thesis, Dept.  of  Math., Tromsö University, Norway.
Reference: [8] D. Lukkassen: Some sharp estimates connected to the homogenized $p$-Laplacian equation.Z. Angew. Math. Mech. 76 (S2) (1996), 603–604. Zbl 1126.35303
Reference: [9] D. Lukkassen, L. E. Persson and P. Wall: On some sharp bounds for the $p$-Poisson equation.Appl. Anal. 58 (1995), 123–135. MR 1384593, 10.1080/00036819508840366
Reference: [10] D. R .S. Talbot, J. R. Willis: Variational principles for nonlinear inhomogeneous media.IMA J.  Appl. Math. 35 (1985), 39–54. MR 0820896, 10.1093/imamat/35.1.39
Reference: [11] D. R. S. Talbot, J. R. Willis: Bounds and self-consistent estimates for the overall properties of nonlinear composites.IMA J.  Appl. Math. 39 (1987), 215–240. MR 0983743, 10.1093/imamat/39.3.215
Reference: [12] J. van  Tiel: Convex Analysis.John Wiley and Sons Ltd., New York, 1984. Zbl 0565.49001, MR 0743904
Reference: [13] P. Wall: Optimal bounds on the effective shear moduli for some nonlinear and reiterated problems.Acta Sci. Math. 65 (1999), 553–566. Zbl 0987.35027, MR 1737271
.

Files

Files Size Format View
AplMat_45-2000-6_3.pdf 417.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo