[1] P.-A. Bliman: 
Etude Mathématique d’un Modèle de Frottement sec: Le Modèle de P. R.  Dahl. Thesis. Université de Paris IX (Paris-Dauphine), Paris and INRIA, Rocquencourt, 1990. 
MR 1289413[3] M. Brokate: 
Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysterese-Typ. Peter Lang, Frankfurt am Main, 1987. (German) 
MR 1031251[4] M. Brokate, K. Dreßler and P.  Krejčí: 
Rainflow counting and energy dissipation for hysteresis models in elastoplasticity. Euro. J.  Mech. A/Solids 15 (1996), 705–735. 
MR 1412202[5] M.  Brokate, A. V. Pokrovskiĭ: 
Asymptotically stable oscillations in systems with hysteresis nonlinearities. J. Differential Equations 150 (1998), 98–123. 
DOI 10.1006/jdeq.1998.3492 | 
MR 1660262[7] M.  Brokate, A.  Visintin: 
Properties of the Preisach model for hysteresis. J.  Reine Angew. Math. 402 (1989), 1–40. 
MR 1022792[9] M. A. Krasnosel’skiĭ, I. D. Mayergoyz, A. V. Pokrovskiĭ and D. I. Rachinskiĭ: 
Operators of hysteresis nonlinearity generated by continuous relay systems. Avtomat. i Telemekh. (1994), 49–60. (Russian) 
MR 1295891[10] M. A. Krasnosel’skiĭ, A. V. Pokrovskiĭ: 
Systems with Hysteresis. English edition Springer 1989, Nauka, Moscow, 1983. (Russian) 
MR 0742931[11] P.  Krejčí: 
On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case. Apl. Mat. 34 (1989), 364–374. 
MR 1014077[12] P.  Krejčí: Global behaviour of solutions to the wave equation with hysteresis. Adv. Math. Sci. Appl. 2 (1993), 1–23.
[14] P.  Krejčí: 
Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol 8. Gakkōtosho, Tokyo, 1996. 
MR 2466538[15] I. D.  Mayergoyz: 
Mathematical Models for Hysteresis. Springer-Verlag, New York, 1991. 
MR 1083150[16] F.  Preisach: Über die magnetische Nachwirkung. Z. Phys. 94 (1935), 277–302. (German)