[1] R. B. Davies: The distribution of a linear combination of chi-square random variables. J. Roy. Statist. Soc. Ser. C 29 (1980), 323–333.
[2] S. Gnot, M. Jankowiak-Rosłanowska and A. Michalski: Testing for hypothesis in mixed linear models with two variance components. Listy Biometryczne—Biometrical Letters 29 (1992), 13–31.
[5] A. I. Khuri, T.  Mathew and B. K. Sinha: 
Statistical Tests for Mixed Linear Models. J. Wiley, New York, 1998. 
MR 1601351 
[6] J. Kleffe, B. Seifert: 
On the role of MINQUE in testing of hypotheses under mixed linear models. Comm. Statist. Theory Methods 17 (1988), 1287–1309. 
DOI 10.1080/03610928808829680 | 
MR 0942977 
[7] L. R. LaMotte, A. McWhorter and R. A. Prasad: 
Confidence intervals and tests on the ratio in random models with two variance components. Comm. Statist. Theory Methods 17 (1988), 1135–1164. 
DOI 10.1080/03610928808829675 | 
MR 0942972 
[9] T. Mathew: 
Optimum invariant tests in mixed linear models with two variance components. In: Statistical Data Analysis and Inference (Y. Dodge, ed.), North-Holland, Amsterdam, 1989, pp. 381–388. 
MR 1089650 | 
Zbl 0735.62068 
[14] C. R. Rao, J.  Kleffe: 
Estimation of Variance Components and Applications. North-Holland Publishing Company, Amsterdam, 1988. 
MR 0933559 
[15] J. F. Seely, Y. El-Bassiouni: 
Applying Wald’s variance component test. Ann. Statist. 11 (1983), 197–201. 
MR 0684876 
[21] V. Witkovský: Optimality of the ANOVA-like test in model with two variance components. In: MEASUREMENT 99. Proceedings of the International Conference on Measurement, Smolenice, Slovak Republic, 26–29 April 1999, I. Frollo, A.  Plačková (eds.), 1999, pp. 28–31.