Previous |  Up |  Next

Article

Title: Spectral sets and the Drazin inverse with applications to second order differential equations (English)
Author: Tran, Trung Dinh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 1
Year: 2002
Pages: 1-8
Summary lang: English
.
Category: math
.
Summary: The paper defines and studies the Drazin inverse for a closed linear operator $A$ in a Banach space $X$ in the case that $0$ belongs to a spectral set of the spectrum of $A$. Results are applied to extend a result of Krein on a nonhomogeneous second order differential equation in a Banach space. (English)
Keyword: Banach space
Keyword: closed linear operators
Keyword: Drazin inverse
Keyword: spectral sets
Keyword: second order differential equations
MSC: 34G10
MSC: 47A05
MSC: 47A10
MSC: 47A60
MSC: 47N20
idZBL: Zbl 1068.47005
idMR: MR1876488
DOI: 10.1023/A:1021793115985
.
Date available: 2009-09-22T18:08:21Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134481
.
Reference: [1] S. L. Campbell: Singular Systems of Differential Equations. Research Notes in Mathematics 40.Pitman, London, 1980. MR 0569589
Reference: [2] M. P. Drazin: Pseudo-inverse in associative rings and semigroups.Amer. Math. Monthly 65 (1958), 506–514. MR 0098762, 10.2307/2308576
Reference: [3] R. E. Harte: Spectral projections.Irish Math.  Soc. Bull. 11 (1984), 10–15. Zbl 0556.47001, MR 0762003
Reference: [4] J. J. Koliha: A generalized Drazin inverse.Glasgow Math. J. 38 (1996), 367–381. Zbl 0897.47002, MR 1417366, 10.1017/S0017089500031803
Reference: [5] J. J. Koliha, Pak  Wai  Poon: Spectral sets II.Rend. Circ. Mat. Palermo (Series II) 47 (1998), 293–310. MR 1633491
Reference: [6] J. J. Koliha, Trung Dinh Tran: The Drazin inverse for closed linear operators.(to appear).
Reference: [7] S. G. Krein: Linear Differential Equations in Banach Space.Amer. Math. Soc., Providence, 1971. MR 0342804
Reference: [8] M.  Z.  Nashed, Y.  Zhao: The Drazin inverse for singular evolution equations and partial differential operators.World Sci. Ser. Appl. Anal. 1 (1992), 441–456. MR 1180129
Reference: [9] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, Berlin, 1983. Zbl 0516.47023, MR 0710486
Reference: [10] A.  E.  Taylor, D.  C.  Lay: Introduction to Functional Analysis, 2nd edition.Wiley, New York, 1980. MR 0564653
.

Files

Files Size Format View
AplMat_47-2002-1_1.pdf 303.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo