Previous |  Up |  Next

Article

Title: A note on contact shape optimization with semicoercive state problems (English)
Author: Haslinger, Jaroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 5
Year: 2002
Pages: 397-410
Summary lang: English
.
Category: math
.
Summary: This note deals with contact shape optimization for problems involving “floating” structures. The boundedness of solutions to state problems with respect to admissible domains, which is the basic step in the existence analysis, is a consequence of Korn’s inequality in coercive cases. In semicoercive cases (meaning that floating bodies are admitted), the Korn inequality cannot be directly applied and one has to proceed in another way: to use a decomposition of kinematically admissible functions and a Korn type inequality on appropriate subspaces. In addition, one has to show that the constant appearing in this inequality is independent with respect to a family of admissible domains. (English)
Keyword: shape optimization
Keyword: semicoercive problems
MSC: 49A29
MSC: 65K10
MSC: 73K25
idZBL: Zbl 1090.65517
idMR: MR1924677
DOI: 10.1023/A:1021709907750
.
Date available: 2009-09-22T18:10:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134504
.
Reference: [1] D. Chenais: On the existence of a solution in a domain identification problem.J.  Math. Anal. Appl. 52 (1975), 189–219. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8
Reference: [2] J.  Haslinger, P.  Neittaanmäki: Finite Element Approximation for Optimal Shape Design: Theory and Applications.J. Wiley, Chichester-New York, 1988. MR 0982710
Reference: [3] J.  Haslinger P.  Neittaanmäki: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd Edition.J.  Wiley, Chichester-New York, 1996. MR 1419500
Reference: [4] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovíšek: Numerical Solution of Variational Inequalities. Springer Series in Applied Mathematical Sciences 66.Springer-Verlag, New York, 1988. MR 0952855
Reference: [5] J. Haslinger P.  Neittaanmäki and T. Tiihonen: Shape optimization of an elastic body in contact based on penalization of the state.Apl. Mat. 31 (1986), 54–77. MR 0836802
Reference: [6] I.  Hlaváček: Inequalities of Korn’s type, uniform with respect to domains.Apl. Mat. 34 (1989), 105–112. MR 0990298
Reference: [7] I. Hlaváček, J.  Nečas: On inequalities of Korn’s type.Arch. Rational Mech. Anal. 36 (1970), 305–334. MR 0252844, 10.1007/BF00249518
Reference: [8] L.  Holzleitner: Hausdorff convergence of domains and their boundaries in shape optimal design.Control Cybernet. 30 (2001), 23–44.
Reference: [9] J. A.  Nitsche: On Korn’s second inequality.RAIRO Anal. Numer. 15 (1981), 237–248. Zbl 0467.35019, MR 0631678, 10.1051/m2an/1981150302371
Reference: [10] O.  Pironneau: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics.Springer-Verlag, New York, 1984. MR 0725856
Reference: [11] J. Sokolowski, J. P.  Zolesio: Introduction to Shape Optimization: Shape Sensitivity Analysis.Springer-Verlag, Berlin, 1992. MR 1215733
.

Files

Files Size Format View
AplMat_47-2002-5_2.pdf 366.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo