[1] B. Desjardins, M. J. Esteban:
Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Rational Mech. Anal. 146 (1999), 59–71.
DOI 10.1007/s002050050136 |
MR 1682663
[2] B. Desjardins, M. J. Esteban:
On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models. Commun. Partial Differential Equations 25 (2000), 1399–1413.
MR 1765138
[3] R. J. DiPerna and P.-L. Lions:
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.
DOI 10.1007/BF01393835 |
MR 1022305
[4] E. Feireisl:
On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42 (2001), 83–98.
MR 1825374 |
Zbl 1115.35096
[5] E. Feireisl:
On the motion of rigid bodies in a viscous compressible fluid. Arch. Rational Mech. Anal. (2002) (to appear).
MR 1981859
[6] E. Feireisl:
On the motion of rigid bodies in a viscous incompressible fluid. J. Evolution Equations (2002) (to appear).
MR 2019028
[7] E. Feireisl, A. Novotný and H. Petzeltová:
On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dynamics 3 (2001), 358–392.
MR 1867887
[8] G. P. Galdi:
On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Rat. Mech. Anal. 148 (1999), 53–88.
DOI 10.1007/s002050050156 |
MR 1715453
[10] M. D. Gunzburger, H. C. Lee and A. Seregin:
Global existence of weak solutions for viscous incompressible flow around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000), 219–266.
DOI 10.1007/PL00000954 |
MR 1781915
[11] K.-H. Hoffmann, V. N. Starovoitov: Zur Bewegung einer Kugel in einer zäher Flüssigkeit. TUM-M9618, München, 1996.
[12] P.-L. Lions:
Mathematical Topics in Fluid Dynamics, Vol.2. Compressible models. Oxford Science Publication, Oxford, 1998.
MR 1637634
[13] K. R. Rajagopal, L. Tao:
Mechanics of Mixtures. World Scientific, Singapore, 1995.
MR 1370661
[14] J. A. San Martin, V. Starovoitov and M. Tucsnak:
Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161 (2002), 93–112.
MR 1870954
[15] D. Serre:
Chute libre d’un solide dans un fluid visqueux incompressible. Existence. Jap. J. Appl. Math. 4 (1987), 99–110.
DOI 10.1007/BF03167757 |
MR 0899206
[16] G. G. Stokes: On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 9 (1851), 80–85.