Previous |  Up |  Next

Article

Keywords:
homogenization theory; numerical methods; effective stiffness properties
Summary:
We present a general numerical method for calculating effective elastic properties of periodic structures based on the homogenization method. Some concrete numerical examples are presented.
References:
[1] J.  Byström, N.  Jekabsons and J.  Varna: An evaluation of different models for prediction of elastic properties of woven composites. Composites: Part B 31, 2000, pp. 7–20.
[2] R. D.  Cook, D.  S.  Malkus and M. E.  Plesha: Concepts and Applications of Finite Element Analysis. J.  Wiley and Sons, 1989.
[3] J.  Franců: Homogenization of linear elasticity equations. Apl. Mat. 27 (1982), 96–117. MR 0651048
[4] L.  Greengard, J.  Helsing: On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J.  Mech. Phys. Solids 46 (1998), 1441–1462. DOI 10.1016/S0022-5096(97)00041-0 | MR 1634000
[5] J.  Helsing: An integral equation method for elastostatics of periodic composites. J.  Mech. Phys. Solids 43 (1995), 815–828. DOI 10.1016/0022-5096(95)00018-E | MR 1332235 | Zbl 0870.73042
[6] R.  Hill: Theory of mechanical properties of fibre-strengthened materials. I. Elastic behaviour. Journal of the Mechanics and Physics of Solids 12 (1964), 199–212. MR 0176652
[7] A.  Holmbom, L. E.  Persson and N.  Svanstedt: A homogenization procedure for computing effective moduli and microstresses in composite materials. Composites Engineering 2 (1992), 249–259. DOI 10.1016/0961-9526(92)90008-T
[8] V. V.  Jikov, S. M.  Kozlov and O. A.  Oleinik: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994. MR 1329546
[9] D.  Lukkassen: A new reiterated structure with optimal macroscopic behavior. SIAM J.  Appl. Math. 59 (1999), 18250–1842. DOI 10.1137/S0036139997320081 | MR 1710545 | Zbl 0933.35023
[10] D.  Lukkassen: Some aspects of reiterated honeycombs. In: Mechanics of Composite Materials and Structures. Vol. III, C. A.  Mota Soares, C. M.  Mota Soares and M. J. M.  Freitas (eds.), NATO ASI, Troia, Portugal, 1998, pp. 399–409.
[11] D.  Lukkassen, L.-E.  Persson, P.  Wall: Some engineering and mathematical aspects on the homogenization method. Composites Engineering 5 (1995), 519–531. DOI 10.1016/0961-9526(95)00025-I
[12] A.  Meidell: The out-of-plane shear modulus of two-component regular honeycombs with arbitrary thickness. In: Mechanics of Composite Materials and Structures. Vol.  III, C. A.  Mota Soares, C. M. Mota Soares and M. J. M.  Freitas (eds.), NATO ASI, Troia, Portugal, 1998, pp. 367–379.
[13] A.  Meidell, P.  Wall: Homogenization and design of structures with optimal macroscopic behaviour. In: Computer Aided Optimum Design of Structures V, S.  Hernández, C. A.  Brebbia (eds.), Computational Mechanics Publications, Southampton, 1997, pp. 393–402.
[14] L. E.  Persson, L.  Persson, N.  Svanstedt and J.  Wyller: The Homogenization Method: An Introduction. Studentlitteratur, Lund, 1993. MR 1250833
[15] J. N.  Reddy: Energy and Variational Methods in Applied Mechanics. J.  Wiley and Sons, New York, 1984. Zbl 0635.73017
Partner of
EuDML logo