Previous |  Up |  Next

Article

Title: Bounds for $f$-divergences under likelihood ratio constraints (English)
Author: Dragomir, S. S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 3
Year: 2003
Pages: 205-223
Summary lang: English
.
Category: math
.
Summary: In this paper we establish an upper and a lower bound for the $f$-divergence of two discrete random variables under likelihood ratio constraints in terms of the Kullback-Leibler distance. Some particular cases for Hellinger and triangular discimination, $\chi ^2$-distance and Rényi’s divergences, etc. are also considered. (English)
Keyword: $f$-divergence
Keyword: divergence measures in information theory
Keyword: Jensen’s inequality
Keyword: Hellinger and triangular discrimination
MSC: 26D15
MSC: 94A17
idZBL: Zbl 1099.94015
idMR: MR1980368
DOI: 10.1023/A:1026054413327
.
Date available: 2009-09-22T18:13:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134528
.
Reference: [1] I.  Csiszár: Information measures: A critical survey.Trans. 7th Prague Conf. on Info. Th., Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist., Volume  B, Academia Prague, 1978, pp. 73–86. MR 0519465
Reference: [2] I.  Csiszár: Information-type measures of difference of probability functions and indirect observations.Studia Sci. Math. Hungar. 2 (1967), 299–318. MR 0219345
Reference: [3] I.  Csiszár, J.  Körner: Information Theory: Coding Theorem for Discrete Memory-less Systems.Academic Press, New York, 1981. MR 0666545
Reference: [4] : Maximum Entropy and Bayesian Methods in Applied Statistics.J. H.  Justice (ed.), Cambridge University Press, Cambridge, 1986. Zbl 0597.00025, MR 0892126
Reference: [5] J. N.  Kapur: On the roles of maximum entropy and minimum discrimination information principles in Statistics.Technical Address of the 38th Annual Conference of the Indian Society of Agricultural Statistics, 1984, pp. 1–44. MR 0786009
Reference: [6] I.  Burbea, C. R.  Rao: On the convexity of some divergence measures based on entropy functions.IEEE Transactions on Information Theory 28 (1982), 489–495. MR 0672884, 10.1109/TIT.1982.1056497
Reference: [7] R. G.  Gallager: Information Theory and Reliable Communications.J.  Wiley, New York, 1968.
Reference: [8] C. E.  Shannon: A mathematical theory of communication.Bull. Sept. Tech. J. 27 (1948), 370–423 and 623–656. Zbl 1154.94303, MR 0026286
Reference: [9] B. R.  Frieden: Image enhancement and restoration.Picture Processing and Digital Filtering, T. S.  Huang (ed.), Springer-Verlag, Berlin, 1975.
Reference: [10] R. M.  Leahy, C. E.  Goutis: An optimal technique for constraint-based image restoration and mensuration.IEEE Trans. on Acoustics, Speech and Signal Processing 34 (1986), 1629–1642. 10.1109/TASSP.1986.1165001
Reference: [11] S. Kullback: Information Theory and Statistics.J.  Wiley, New York, 1959. Zbl 0088.10406, MR 0103557
Reference: [12] S.  Kullback, R. A.  Leibler: On information and sufficiency.Ann. Math. Statistics 22 (1951), 79–86. MR 0039968, 10.1214/aoms/1177729694
Reference: [13] R.  Beran: Minimum Hellinger distance estimates for parametric models.Ann. Statist. 5 (1977), 445–463. Zbl 0381.62028, MR 0448700, 10.1214/aos/1176343842
Reference: [14] A.  Renyi: On measures of entropy and information.Proc. Fourth Berkeley Symp. Math. Statist. Prob., Vol. 1, University of California Press, Berkeley, 1961. Zbl 0106.33001, MR 0132570
Reference: [15] S. S. Dragomir, N. M. Ionescu: Some converse of Jensen’s inequality and applications.Anal. Numer. Theor. Approx. 23 (1994), 71–78. MR 1325895
Reference: [16] S. S.  Dragomir, C. J.  Goh: A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in information theory.Math. Comput. Modelling 24 (1996), 1–11. MR 1403525, 10.1016/0895-7177(96)00085-4
Reference: [17] S. S.  Dragomir, C. J.  Goh: Some counterpart inequalities in for a functional associated with Jensen’s inequality.J. Inequal. Appl. 1 (1997), 311–325. MR 1732628
Reference: [18] S. S.  Dragomir, C. J.  Goh: Some bounds on entropy measures in information theory.Appl. Math. Lett. 10 (1997), 23–28. MR 1457634, 10.1016/S0893-9659(97)00028-1
Reference: [19] S. S. Dragomir, C. J. Goh: A counterpart of Jensen’s continuous inequality and applications in information theory.RGMIA Preprint.http://matilda.vu.edu.au/~rgmia/InfTheory/Continuse.dvi. MR 1977385
Reference: [20] M.  Matić: Jensen’s inequality and applications in information theory.Ph.D. Thesis, Univ. of Zagreb, 1999. (Croatian)
Reference: [21] S. S.  Dragomir, J. Unde and M.  Scholz: Some upper bounds for relative entropy and applications.Comput. Math. Appl. 39 (2000), 257–266. MR 1753564, 10.1016/S0898-1221(00)00089-4
Reference: [22] J. N.  Kapur: A comparative assessment of various measures of directed divergence.Advances Manag. Stud. 3 (1984), 1–16.
Reference: [23] D. S.  Mitrinović, J. E.  Pečarić and A. M.  Fink: Classical and New Inequalities in Analysis.Kluwer Academic Publishers, , 1993. MR 1220224
Reference: [24] F.  Topsoe: Some inequalities for information divergence and related measures of discrimination.Res. Rep. Coll. RGMIA 2 (1999), 85–98. MR 1768575
Reference: [25] D.  Dacunha-Castelle: Vitesse de convergence pour certains problemes statistiques.In: Ecole d’été de Probabilités de Saint-Flour, VII (Saint-Flour, 1977). Lecture Notes in Math. Vol. 678, Springer, Berlin, 1978, pp. 1–172. Zbl 0387.62015, MR 0518733
Reference: [26] H.  Jeffreys: An invariant form for the prior probability in estimation problems.Proc. Roy. Soc. London Ser.  A 186 (1946), 453–461. Zbl 0063.03050, MR 0017504, 10.1098/rspa.1946.0056
Reference: [27] A.  Bhattacharyya: On a measure of divergence between two statistical populations defined by their probability distributions.Bull. Calcutta Math. Soc. 35 (1943), 99–109. Zbl 0063.00364, MR 0010358
Reference: [28] S. S.  Dragomir: Some inequalities for the Csiszár $\Phi $-divergence.Submitted.
Reference: [29] S. S.  Dragomir: A converse inequality for the Csiszár $\Phi $-divergence.Submitted. Zbl 1066.94007
Reference: [30] S. S. Dragomir: Some inequalities for $(m,M)$-convex mappings and applications for the Csiszár $\Phi $-divergence in information theory.Math. J. Ibaraki Univ. (Japan) 33 (2001), 35–50. Zbl 0996.26019, MR 1883258
Reference: [31] F.  Liese, I.  Vajda: Convex Statistical Distances.Teubner Verlag, Leipzig, 1987. MR 0926905
Reference: [32] I.  Vajda: Theory of Statistical Inference and Information.Kluwer, Boston, 1989. Zbl 0711.62002
.

Files

Files Size Format View
AplMat_48-2003-3_4.pdf 374.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo