Previous |  Up |  Next

Article

Title: Regularity of pressure in the neighbourhood of regular points of weak solutions of the Navier-Stokes equations (English)
Author: Skalák, Zdeněk
Author: Kučera, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 573-586
Summary lang: English
.
Category: math
.
Summary: In the context of the weak solutions of the Navier-Stokes equations we study the regularity of the pressure and its derivatives in the space-time neighbourhood of regular points. We present some global and local conditions under which the regularity is further improved. (English)
Keyword: Navier-Stokes equations
Keyword: regularity of weak solutions
Keyword: regular and singular points
MSC: 35D10
MSC: 35Q30
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 1099.35104
idMR: MR2025965
DOI: 10.1023/B:APOM.0000024495.20079.27
.
Date available: 2009-09-22T18:16:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134552
.
Reference: [1] L.  Caffarelli, R.  Kohn and L.  Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math. 35 (1982), 771–831. MR 0673830, 10.1002/cpa.3160350604
Reference: [2] A. P.  Calderón, A.  Zygmund: On singular integrals.Amer. J.  Math. 78 (1956), 289–309. MR 0084633, 10.2307/2372517
Reference: [3] C.  Foias, R.  Temam: Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations.J.  Math. Pures Appl. 58 (1979), 339–368. MR 0544257
Reference: [4] G. P.  Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I: Linearized and Steady Problems; Vol. II: Nonlinear Steady Problems.Springer-Verlag, New York-Berlin-Heidelberg, 1994. MR 1284205
Reference: [5] H.  Kozono: Removable singularities of weak solutions to the Navier-Stokes equations.Comm. Partial Differential Equations 23 (1998), 949–966. Zbl 0910.35090, MR 1632780, 10.1080/03605309808821374
Reference: [6] O. A.  Ladyzhenskaya, G. A.  Seregin: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations.J.  Math. Fluid Mech. 1 (1999), 356–387. MR 1738171, 10.1007/s000210050015
Reference: [7] J.  Serrin: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Rational Mech. Anal. 9 (1962), 187–195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344
Reference: [8] Y.  Taniuchi: On generalized energy equality of the Navier-Stokes equations.Manuscripta Math. 94 (1997), 365–384. Zbl 0896.35106, MR 1485443, 10.1007/BF02677860
Reference: [9] R.  Temam: The Navier-Stokes Equations, Theory and Numerical Analysis.North-Holland Publishing Company, Amsterodam-New York-Oxford, 1979. MR 0603444
.

Files

Files Size Format View
AplMat_48-2003-6_15.pdf 354.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo