Previous |  Up |  Next

Article

Title: A maxmin principle for nonlinear eigenvalue problems with application to a rational spectral problem in fluid-solid vibration (English)
Author: Voss, Heinrich
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 607-622
Summary lang: English
.
Category: math
.
Summary: In this paper we prove a maxmin principle for nonlinear nonoverdamped eigenvalue problems corresponding to the characterization of Courant, Fischer and Weyl for linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in fluid-solid interaction. (English)
Keyword: nonlinear eigenvalue problem
Keyword: variational characterization
Keyword: maxmin principle
Keyword: fluid structure interaction
MSC: 35P30
MSC: 47J10
MSC: 49R50
MSC: 74F10
MSC: 74H45
idZBL: Zbl 1099.35076
idMR: MR2025967
DOI: 10.1023/B:APOM.0000024497.09571.54
.
Date available: 2009-09-22T18:16:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134554
.
Reference: [1] E. M.  Barston: A minimax principle for nonoverdamped systems.Internat. J. Engrg. Sci. 12 (1974), 413–421. Zbl 0288.15023, MR 0448226, 10.1016/0020-7225(74)90051-2
Reference: [2] C. Conca, J.  Planchard and M.  Vanninathan: Existence and location of eigenvalues for fluid-solid structures.Comput. Methods Appl. Mech. Engrg. 77 (1989), 253–291. MR 1031134, 10.1016/0045-7825(89)90078-9
Reference: [3] R.  Courant: Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik.Math. Z. 7 (1920), 1–57. MR 1544417, 10.1007/BF01199396
Reference: [4] R. J.  Duffin: A minmax theory for overdamped networks.J. Ration. Mech. Anal. 4 (1955), 221–233. MR 0069030
Reference: [5] N. Dunford, J. T. Schwartz: Linear Operators, Part II.Wiley, New York-London, 1963. MR 1009163
Reference: [6] E.  Fischer: Über quadratische Formen mit reellen Koeffizienten.Monatshefte für Math. und Phys. 16 (1905), 234–249. MR 1547416
Reference: [7] K. P. Hadeler: Mehrparametrige und nichtlineare Eigenwertaufgaben.Arch. Ration. Mech. Anal. 27 (1967), 306–328. Zbl 0166.41701, MR 0222691, 10.1007/BF00281717
Reference: [8] K. P.  Hadeler: Variationsprinzipien bei nichtlinearen Eigenwertaufgaben.Arch. Ration. Mech. Anal. 30 (1968), 297–307. Zbl 0165.48101, MR 0234322, 10.1007/BF00281537
Reference: [9] K. P. Hadeler: Nonlinear Eigenvalue Problems.In: Numerische Behandlung von Differentialgleichungen, R.  Ansorge, L.  Collatz, G.  Hämmerlin and W.  Törnig (eds.), Birkhäuser, Stuttgart, 1975, pp. 111–129. Zbl 0342.65024, MR 0405221
Reference: [10] H.  Langer: Über stark gedämpfte Scharen im Hilbertraum.J. Math. Mech. 17 (1968), 685–705. Zbl 0157.21303, MR 0229072
Reference: [11] J. Planchard: Eigenfrequencies of a tube bundle placed in a confined fluid.Comput. Methods Appl. Mech. Engrg. 30 (1982), 75–93. Zbl 0483.70016, MR 0659568, 10.1016/0045-7825(82)90055-X
Reference: [12] H.  Poincaré: Sur les équations aux dérivées partielles de la physique mathématique.Amer. J. Math. 12 (1890), 211–294. MR 1505534
Reference: [13] Rayleigh: Some general theorems relating to vibrations.Proc. London Math. Soc. 4 (1873), 357–368.
Reference: [14] K.  Rektorys: Variationsmethoden in Mathematik, Physik und Technik.Carl Hanser Verlag, München, 1984. Zbl 0568.49001, MR 0799323
Reference: [15] E. H. Rogers: A minmax theory for overdamped systems.Arch. Ration. Mech. Anal. 16 (1964), 89–96. MR 0163459, 10.1007/BF00281333
Reference: [16] E. H. Rogers: Variational properties of nonlinear spectra.J. Math. Mech. 18 (1968), 479–490. Zbl 0175.13702, MR 0234309
Reference: [17] R. E. L.  Turner: Some variational principles for nonlinear eigenvalue problems.J. Math. Anal. Appl. 17 (1967), 151–160. MR 0209893, 10.1016/0022-247X(67)90172-2
Reference: [18] R. E. L.  Turner: A class of nonlinear eigenvalue problems.J. Funct. Anal. 7 (1968), 297–322. Zbl 0169.17004, MR 0233223
Reference: [19] H. Voss, B. Werner: A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems.Math. Methods Appl. Sci. 4 (1982), 415–424. MR 0669135, 10.1002/mma.1670040126
Reference: [20] B. Werner: Das Spektrum von Operatorenscharen mit verallgemeinerten Rayleighquotienten.Arch. Ration. Mech. Anal. 42 (1971), 223–238. MR 0348521, 10.1007/BF00250487
Reference: [21] H.  Weyl: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung).Math. Ann. 71 (1912), 441–479. MR 1511670, 10.1007/BF01456804
.

Files

Files Size Format View
AplMat_48-2003-6_17.pdf 347Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo