[3] O. Axelsson:
On multigrid methods of the two-level type. In: Multigrid Methods, Lecture Notes in Math. 960, W. Hackbusch, U. Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367.
MR 0685778 |
Zbl 0505.65040
[5] O. Axelsson, V. A. Barker:
Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984, reprinted as SIAM Classics in Applied Mathematics 35, SIAM, Philadelphia, 2001.
MR 0758437
[6] O. Axelsson, I. Gustafsson:
Preconditioning and two-level multigrid methods of arbitrary degree of approximation [Report 8120 (July 1981), Department of Mathematics, University of Nijmegen, The Netherlands]. Math. Comp. 40 (1983), 219–242.
MR 0679442
[7] O. Axelsson, A. Padiy:
On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20 (1999), 1807–1830.
DOI 10.1137/S1064827597320058 |
MR 1694685
[11] J. F. Maitre, F. Musy:
The contraction number of a class of two-level methods, an exact evaluation for some finite element subspaces and model problems. In: Multigrid Methods, Lecture Notes in Math. 960, W. Hackbusch, U. Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 535–544.
MR 0685787
[12] J. Nečas, I. Hlaváček:
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[13] S. D. Margenov:
Upper bound on the constant in the strengthened C.B.S. inequality for FEM 2D elasticity equations. Numer. Linear Algebra Appl. 1 (1994), 65–74.
DOI 10.1002/nla.1680010107 |
MR 1269944