Previous |  Up |  Next

Article

Keywords:
finite element method; $h$- and $p$-refinement; strengthened Cauchy-Bunyakowski-Schwarz inequality
Summary:
Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the elasticity theory equations.
References:
[1] B.  Achchab, O.  Axelsson, L.  Laayouni and A. Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three dimensional elasticity system. Numer. Linear Algebra Appl. 8 (2001), 191–205. DOI 10.1002/1099-1506(200104/05)8:3<191::AID-NLA229>3.0.CO;2-7 | MR 1817796
[2] B.  Achchab, J.  Maitre: Estimate of the constant in two strengthened C.B.S.  inequalities for F.E.M.  systems of 2D  elasticity. Applications to multilevel methods and a posteriori error estimators. Numer. Linear Algebra Appl. 3 (1996), 147–159. DOI 10.1002/(SICI)1099-1506(199603/04)3:2<147::AID-NLA75>3.0.CO;2-S | MR 1379558
[3] O.  Axelsson: On multigrid methods of the two-level type. In: Multigrid Methods, Lecture Notes in Math.  960, W.  Hackbusch, U.  Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367. MR 0685778 | Zbl 0505.65040
[4] O.  Axelsson: Stabilization of algebraic multilevel iteration methods; additive methods. Numer. Algorithms 21 (1999), 23–47. DOI 10.1023/A:1019136808500 | MR 1725714 | Zbl 0937.65135
[5] O.  Axelsson, V. A. Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press, Orlando, 1984, reprinted as SIAM Classics in Applied Mathematics 35, SIAM, Philadelphia, 2001. MR 0758437
[6] O. Axelsson, I. Gustafsson: Preconditioning and two-level multigrid methods of arbitrary degree of approximation [Report 8120 (July 1981), Department of Mathematics, University of Nijmegen, The Netherlands]. Math. Comp. 40 (1983), 219–242. MR 0679442
[7] O. Axelsson, A. Padiy: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20 (1999), 1807–1830. DOI 10.1137/S1064827597320058 | MR 1694685
[8] R. Blaheta: Adaptive composite grid methods for problems of plasticity. Math. Comput. Simulation 50 (1999), 123–134. DOI 10.1016/S0378-4754(99)00064-6 | MR 1717646
[9] R.  Blaheta: Nested tetrahedral grids and strengthened C.B.S. inequality. Numer. Linear Algebra Appl. 10 (2003), 619–637. DOI 10.1002/nla.340 | MR 2030627 | Zbl 1071.65164
[10] M. Jung, J. F.  Maitre: Some remarks on the constant in the strengthened C.B.S. inequality: estimate for hierarchic finite element discretization of elasticity problems. Numer. Methods Partial Differential Equations 15 (1999), 469–488. DOI 10.1002/(SICI)1098-2426(199907)15:4<469::AID-NUM4>3.0.CO;2-B | MR 1695748
[11] J. F.  Maitre, F.  Musy: The contraction number of a class of two-level methods, an exact evaluation for some finite element subspaces and model problems. In: Multigrid Methods, Lecture Notes in Math. 960, W. Hackbusch, U. Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 535–544. MR 0685787
[12] J.  Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981. MR 0600655
[13] S. D. Margenov: Upper bound on the constant in the strengthened C.B.S. inequality for FEM 2D elasticity equations. Numer. Linear Algebra Appl. 1 (1994), 65–74. DOI 10.1002/nla.1680010107 | MR 1269944
Partner of
EuDML logo