Previous |  Up |  Next

Article

Title: Numerical simulations of glacial rebound using preconditioned iterative solution methods (English)
Author: Bängtsson, Erik
Author: Neytcheva, Maya
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 3
Year: 2005
Pages: 183-201
Summary lang: English
.
Category: math
.
Summary: This paper discusses finite element discretization and preconditioning strategies for the iterative solution of nonsymmetric indefinite linear algebraic systems of equations arising in modelling of glacial rebound processes. Some numerical experiments for the purely elastic model setting are provided. Comparisons of the performance of the iterative solution method with a direct solution method are included as well. (English)
Keyword: elasticity
Keyword: advection
Keyword: FEM
Keyword: error estimates
Keyword: saddle point problem
Keyword: iterative methods
MSC: 65F10
MSC: 86-08
MSC: 86A40
idZBL: Zbl 1099.65030
idMR: MR2133726
DOI: 10.1007/s10492-005-0013-3
.
Date available: 2009-09-22T18:21:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134602
.
Reference: [1] O. Axelsson, V. A. Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation.Academic Press, Orlando, 1984. MR 0758437
Reference: [2] O. Axelsson, M. Neytcheva: Preconditioning methods for constrained optimization problems.Numer. Linear Algebra Appl. 10 (2003), 3–31. MR 1964284, 10.1002/nla.310
Reference: [3] O. Axelsson, V. A. Barker, M. Neytcheva, and B. Polman: Solving the Stokes problem on a massively parallel computer.Math. Model. Anal. 6 (2001), 7–27. MR 1906506, 10.3846/13926292.2001.9637141
Reference: [4] O. Axelsson, A.  Padiy: On a robust and scalable linear elasticity solver based on a saddle point formulation.Int. J.  Numer. Methods Eng. 44 (1999), 801–818. MR 1672010, 10.1002/(SICI)1097-0207(19990228)44:6<801::AID-NME525>3.0.CO;2-Y
Reference: [5] M. Benzi, G. Golub, and J. Liesen: Numerical solution of saddle point problems.Acta Numer (to appear). MR 2168342
Reference: [6] W. Bangerth, R. Hartmann, and G. Kanschat: deal.II Differential Equations Analysis Library, Technical Reference, IWR, http://www.dealii.org..
Reference: [7] H. C.  Elman: Preconditioning for the steady-state Navier-Stokes equations with low viscosity.SIAM J.  Sci. Comput. 20 (1999), 1299–1316. Zbl 0935.76057, MR 1675474, 10.1137/S1064827596312547
Reference: [8] H. C. Elman, D. Loghin, A. J. Wathen: Preconditioning techniques for Newton’s method for the incompressible Navier-Stokes equations.BIT 43 (2003), 961–974. MR 2058878, 10.1023/B:BITN.0000014565.86918.df
Reference: [9] H. C. Elman, D. Silvester: Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations.SIAM J.  Sci. Comput. 17 (1996), 33–46. MR 1375264, 10.1137/0917004
Reference: [10] H. Elman, D. Silvester, A. J. Wathen: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations.Numer. Math. 90 (2002), 665–688. MR 1888834, 10.1007/s002110100300
Reference: [11] I. Ipsen: A note on preconditioning nonsymmetric matrices.SIAM J.  Sci. Comput. 23 (2001), 1050–1051. Zbl 0998.65049, MR 1860977, 10.1137/S1064827500377435
Reference: [12] A. Klawonn: An optimal preconditioners for a class of saddle point problems with a penalty term.SIAM J.  Sci. Comput 19 (1998), 540–552. MR 1618832, 10.1137/S1064827595279575
Reference: [13] A. Klawonn, G. Starke: Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis.Numer. Math. 81 (1999), 577–594. MR 1675216, 10.1007/s002110050405
Reference: [14] V. Klemann, P. Wu, and D. Wolf: Compressible viscoelasticity: stability of solutions for homogeneous plane-Earth models.Geophys. J. 153 (2003), 569–585. 10.1046/j.1365-246X.2003.01920.x
Reference: [15] J. K. Kraus: Algebraic multilevel preconditioning of finite element matrices using local Schur complements.Submitted.
Reference: [16] B. Liu, R. B. Kellogg: Discontinuous solutions of linearized steady state viscous compressible flows.J.  Math. Anal. Appl. 180 (1993), 469–497. MR 1251871, 10.1006/jmaa.1993.1412
Reference: [17] D. Loghin, A. J. Wathen: Analysis of preconditioners for saddle-point problems.SIAM J.  Sci. Comput. 25 (2004), 2029–2049. MR 2086829, 10.1137/S1064827502418203
Reference: [18] J. Nedoma: Numerical Modelling in Applied Geodynamics.John Wiley & Sons, New York, 2000.
Reference: [19] A. A. Ramage: A multigrid preconditioner for stabilised discretisations of advection-diffusion problems.J.  Comput. Appl. Math. 110 (1999), 187–203. Zbl 0939.65135, MR 1715555, 10.1016/S0377-0427(99)00234-4
Reference: [20] Y. Saad: SPARSKIT: A basic tool-kit for sparse matrix computations.Technical Documentation, http://www-users.cs.umn.edu/$\sim $saad/software/SPARSKIT/sparskit.html.
Reference: [21] S. Shaw, M. K. Warby, J. R. Whiteman, C. Dawson, and M. F. Wheeler: Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids.Comput. Methods Appl. Mech. Eng. 118 (1994), 211–237. MR 1298954
Reference: [22] P. Wu: Viscoelastic versus viscous deformation and the advection of pre-stress.Internat. J.  Geophys. 108 (1992), 136–142. 10.1111/j.1365-246X.1992.tb00844.x
Reference: [23] P. Wu: Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress.Internat. J.  Geophys. 158 (2004), 401–408. 10.1111/j.1365-246X.2004.02338.x
Reference: [24] : Portable, Extensible Toolkit for Scientific computation (PETSc) suite.Mathematics and Computer Science Division, Argonne Natinal Laboratory,.
.

Files

Files Size Format View
AplMat_50-2005-3_3.pdf 440.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo