Previous |  Up |  Next

Article

Title: Quadrature formulas based on the scaling function (English)
Author: Finěk, Václav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 4
Year: 2005
Pages: 387-399
Summary lang: English
.
Category: math
.
Summary: The scaling function corresponding to the Daubechies wavelet with two vanishing moments is used to derive new quadrature formulas. This scaling function has the smallest support among all orthonormal scaling functions with the properties $M_2 = M_1^2$ and $M_0 = 1$. So, in this sense, its choice is optimal. Numerical examples are given. (English)
Keyword: Daubechies wavelet
Keyword: quadrature formula
MSC: 41A55
MSC: 42C40
MSC: 65D30
MSC: 65D32
MSC: 65T60
idZBL: Zbl 1099.65147
idMR: MR2151463
DOI: 10.1007/s10492-005-0029-8
.
Date available: 2009-09-22T18:23:05Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134613
.
Reference: [1] J. J.  Benedetto, M. W.  Frazier: Wavelets: Mathematics and Applications. Studies in Advanced Mathematics.CRC Press, Boca Raton, 1994. MR 1247511
Reference: [2] A.  Cohen: Wavelet Methods in Numerical Analysis.Handbook of Numerical Analysis, Vol.  VII, P. G. Ciarlet et al. (eds.), North-Holland/Elsevier, Amsterdam, 2000, pp. 417–711. Zbl 0976.65124, MR 1804747
Reference: [3] I.  Daubechies: Orthonormal bases of compactly supported wavelets.Commun. Pure Appl. Math. 41 (1988), 909–996. Zbl 0644.42026, MR 0951745, 10.1002/cpa.3160410705
Reference: [4] I.  Daubechies: Ten Lectures on Wavelets.SIAM Publ., Philadelphia, 1992. Zbl 0776.42018, MR 1162107
Reference: [5] V.  Finěk: Daubechies wavelets and two-point boundary value problems.Appl. Math. 49 (2004), 465–481. MR 2086089
Reference: [6] V.  Finěk: Approximation properties of wavelets and relations among scaling moments.Numer. Funct. Anal. Optimization 25 (2004), 503–513. Zbl 1069.42022, MR 2106272, 10.1081/NFA-200041709
Reference: [7] G.  Hanwei, Y.  Jiaxian, H.  Jianguo, and L.  Peiguo: The Numerical Integral Algorithm Based on Multiresolution Analysis.Preprint (Wavelet Digest), Department of Electronic Technique, NUDT, Changsha, 2001.
Reference: [8] A. K.  Louis, P.  Maaß, and A.  Rieder: Wavelets. Theorie und Anwendungen.Teubner, Stuttgart, 1994. MR 1371382
Reference: [9] Y. Meyer: Ondelettes et Opérateurs  I: Ondelettes.Hermann Press, Paris, 1990; English translation: Wavelets and Operators. Cambridge University Press, Cambridge, 1992. Zbl 0694.41037, MR 1085487
Reference: [10] W.-Ch. Shann, J.-Ch.  Yan: Quadratures involving polynomials and Daubechies’ wavelets.Preprint, National Central University, Chung-Li, R.O.C., April 1994.
Reference: [11] W.  Sweldens, R.  Piessens: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions.SIAM J.  Numer. Anal. 31 (1994), 1240–1264. MR 1286226, 10.1137/0731065
Reference: [12] P. Wojtaszczyk: A Mathematical Introduction to Wavelets.Cambridge University Press, Cambridge, 1997. Zbl 0865.42026, MR 1436437
.

Files

Files Size Format View
AplMat_50-2005-4_4.pdf 339.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo