[1] J. T. Beale, T. Kato, and A. Majda:
Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94 (1984), 61–66.
DOI 10.1007/BF01212349 |
MR 0763762
[3] A. L. Bertozzi, A. J. Majda:
Vorticity and the Mathematical Theory of Incompresible Fluid Flow. Cambridge Texts in Applied Mathematics No. 27. Cambridge University Press, Cambridge, 2002.
MR 1867882
[10] P. Constantin, C. Fefferman, and A. J. Majda:
Geometric constraints on potentially singular solutions for the 3-D Euler equations. Commun. Partial Differ. Equation 21 (1996), 559–571.
DOI 10.1080/03605309608821197 |
MR 1387460
[11] P. Constantin, A. J. Majda, and E. Tabak:
Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 (1994), 1495–1533.
DOI 10.1088/0951-7715/7/6/001 |
MR 1304437
[14] A. Córdoba, D. Córdoba:
A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100 (2003), 15316–15317.
DOI 10.1073/pnas.2036515100 |
MR 2032097
[17] D. Córdoba:
Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 148 (1998), 1135–1152.
DOI 10.2307/121037 |
MR 1670077
[20] D. Córdoba, C. Fefferman, and J. L. Rodrigo:
Almost sharp fronts for the surface quasi-geostrophic equations. Proc. Natl. Acad. Sci. USA 101 (2004), 2687–2691.
DOI 10.1073/pnas.0308154101 |
MR 2036970
[21] D. Córdoba, M. Fontelos, A. Mancho, and J. L. Rodrigo:
Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102 (2005), 5949–5952.
DOI 10.1073/pnas.0501977102 |
MR 2141918
[22] R. J. Diperna, P. L. Lions:
Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.
DOI 10.1007/BF01393835 |
MR 1022305
[23] C. R. Doering, J. D. Gibbon:
Applied analysis of the Navier Stokes equations. Cambridge University Press, Cambridge, 1995.
MR 1325465
[24] C. Foias, C. Guillopé, and R. Témam:
New a priori estimates for Navier-Stokes equations in dimension 3. Commun. Partial Differ. Equations 6 (1981), 329–359.
DOI 10.1080/03605308108820180 |
MR 0607552
[27] H. Kozono, Y. Taniuchi:
Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214 (2000), 191–200.
DOI 10.1007/s002200000267 |
MR 1794270
[28] T. A. Kowalewski: On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17 (1996), 121–145.
[29] K. Ohkitani, M. Yamada:
Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow. Phys. Fluids 9 (1997), 876–882.
DOI 10.1063/1.869184 |
MR 1437554
[30] J. Pedlosky:
Geophysical Fluid Dynamics. Springer-Verlag, New York, 1987.
Zbl 0713.76005
[31] M. T. Plateau: Smithsonian Report 250. 1863.
[32] Rayleigh, Lord (J. W. Strutt): On the instability of jets. Proc. L. M. S. 10 (1879), 4–13.
[33] S. Resnick: Dynamical problem in nonlinear advective partial differential equations. PhD. Thesis, University of Chicago, 1995.
[35] R. Salmon:
Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York, 1998.
MR 1718369
[36] F. Savart: Mémoire sur la Constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53 (1833), 337–386. (French)
[38] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970.
MR 0290095 |
Zbl 0207.13501
[41] L. Tartar:
Topics in Nonlinear Analysis. Publications Mat. D’Orsay, No. 7813. Univ. de Paris-Sud, Orsay, 1978.
MR 0532371