Previous |  Up |  Next

Article

Title: Regularity of minima: an invitation to the Dark Side of the Calculus of Variations (English)
Author: Mingione, Giuseppe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 4
Year: 2006
Pages: 355-426
Summary lang: English
.
Category: math
.
Summary: I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side... (English)
Keyword: regularity
Keyword: minimizers
Keyword: Dark Side
MSC: 35J20
MSC: 35J70
MSC: 49N60
idZBL: Zbl 1164.49324
idMR: MR2291779
DOI: 10.1007/s10778-006-0110-3
.
Date available: 2009-09-22T18:26:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134645
.
Reference: [1] E.  Acerbi, N.  Fusco: Semicontinuity problems in the calculus of variations.Arch. Ration. Mech. Anal. 86 (1984), 125–145. MR 0751305
Reference: [2] E.  Acerbi, N.  Fusco: A regularity theorem for minimizers of quasiconvex integrals.Arch. Ration. Mech. Anal. 99 (1987), 261–281. MR 0888453
Reference: [3] E.  Acerbi, N.  Fusco: Local regularity for minimizers of nonconvex integrals.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 16 (1989), 603–636. MR 1052736
Reference: [4] E.  Acerbi, N.  Fusco: Partial regularity under anisotropic $(p,q)$  growth conditions.J.  Differ. Equations 107 (1994), 46–67. MR 1260848
Reference: [5] E.  Acerbi, G.  Mingione: Regularity results for a class of functionals with non-standard growth.Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973
Reference: [6] E.  Acerbi, G.  Mingione: Regularity results for a class of quasiconvex functionals with nonstandard growth.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 30 (2001), 311–339. MR 1895714
Reference: [7] E.  Acerbi, G.  Mingione: Regularity results for stationary electro-rheological fluids.Arch. Ration. Mech. Anal. 164 (2002), 213–259. MR 1930392
Reference: [8] E.  Acerbi, G.  Mingione: Gradient estimates for the $p(x)$-Laplacean system.J. Reine Angew. Math. 584 (2005), 117–148. MR 2155087
Reference: [9] E.  Acerbi, G.  Mingione: Gradient estimates for a class of parabolic systems.Duke Math.  J, to appear. MR 2286632
Reference: [10] E. Acerbi, G. Mingione, and G. A. Seregin: Regularity results for parabolic systems related to a class of non Newtonian fluids.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 25–60. MR 2037246
Reference: [11] Yu. A.  Alkhutov: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition.Differ. Equations 33 (1997), 1653–1663. Zbl 0949.35048, MR 1669915
Reference: [12] F. J.  Almgren: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure.Ann. Math. 87 (1968), 321–391. Zbl 0162.24703, MR 0225243
Reference: [13] F. J.  Almgren: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Mem. Am. Math. Soc. 165.Am. Math. Soc. (AMS), Providence, 1976. MR 0420406
Reference: [14] L.  Ambrosio: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Lecture Notes.Scuola Normale Superiore, Pisa, 1995. (Italian) MR 1736268
Reference: [15] S. N.  Antontsev, S. I.  Shmarev: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal., Theory Methods Appl. 60 (2005), 515–545. MR 2103951
Reference: [16] S. N.  Antontsev, S. I.  Shmarev: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Pré-publicasao  n. 4, DMUBI..
Reference: [17] S. N.  Antontsev, V. V.  Zhikov: Higher integrability for parabolic equations of $p(x;t)$-Laplacian type.Adv. Differential Equations 10 (2005), 1053–1080. MR 2161759
Reference: [18] G.  Anzellotti: On the $C^{1,\alpha }$-regularity of $\omega $-minima of quadratic functionals.Boll. Unione Mat. Ital., VI.  Ser.,  C, Anal. Funz. Appl. 2 (1983), 195–212. MR 0718371
Reference: [19] A. A.  Arkhipova: Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity  $q$ greater than two.J. Math. Sci. 115 (2003), 2735–2746. MR 1810609
Reference: [20] G.  Aronsson, M. G.  Crandall, and P.  Juutinen: A tour of the theory of absolutely minimizing functions.Bull. Am. Math. Soc., New Ser. 41 (2004), 439–505. MR 2083637
Reference: [21] K.  Astala: Area distortion of quasiconformal mappings.Acta Math. 173 (1994), 37–60. Zbl 0815.30015, MR 1294669
Reference: [22] H.  Attouch, C.  Sbordone: Asymptotic limits for perturbed functionals of calculus of variations.Ric. Mat. 29 (1980), 85–124. MR 0605596
Reference: [23] J. M.  Ball: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Ration. Mech. Anal. 63 (1977), 337–403. Zbl 0368.73040, MR 0475169
Reference: [24] J. M.  Ball: Some open problems in elasticity.In: Geometry, Mechanics, and Dynamics, P.  Newton (ed.), Springer-Verlag, New York, 2002, pp. 3–59. Zbl 1054.74008, MR 1919825
Reference: [25] J. M.  Ball, V. J.  Mizel: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation.Arch. Ration. Mech. Anal. 90 (1985), 325–388. MR 0801585
Reference: [26] J. M.  Ball, F. Murat: $W^{1,p}$-quasiconvexity and variational problems for multiple integrals.J.  Funct. Anal. 58 (1984), 225–253. MR 0759098
Reference: [27] J. M.  Ball, J. C.  Currie, and P. J.  Olver: Null Lagrangians, weak continuity, and variational problems of arbitrary order.J.  Funct. Anal. 41 (1981), 135–174. MR 0615159
Reference: [28] L.  Beck: Partielle Regularität für Schwache Lösungen nichtlinearer elliptischer Systeme: der Subquadratische Fall.Diploma Thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2005. (German)
Reference: [29] L.  Beck: Boundary regularity results for systems with sub-linear growth.(to appear).
Reference: [30] I.  Benedetti, E.  Mascolo: Regularity of minimizers for nonconvex vectorial integrals with $p$-$q$ growth via relaxation methods.Abstr. Appl. Anal. (2004), 27–44. MR 2058791
Reference: [31] A.  Bensoussan, J.  Frehse: Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences  151.Springer-Verlag, Berlin, 2002. MR 1917320
Reference: [32] J. J.  Bevan: Polyconvexity and counterexamples to regularity in the multidimensional calculus of variations.PhD. Thesis, , Oxford, 2003.
Reference: [33] J.  Bevan: Singular minimizers of strictly polyconvex functionals in $\mathbb{R}^{2\times 2}$.Calc. Var. Partial Differ. Equ. 23 (2005), 347–372. MR 2142068
Reference: [34] T.  Bhattacharya, F.  Leonetti: A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth.Nonlinear Anal., Theory Methods Appl. 17 (1991), 833–839. MR 1131493
Reference: [35] T.  Bhattacharya, F.  Leonetti: $W^{2,2}$ regularity for weak solutions of elliptic systems with nonstandard growth.J.  Math. Anal. Appl. 176 (1993), 224–234. MR 1222166
Reference: [36] M.  Bildhauer: Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics Vol. 1818.Springer-Verlag, Berlin, 2003. MR 1998189
Reference: [37] M.  Bildhauer: A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth.J.  Convex Anal. 9 (2002), 117–137. Zbl 1011.49022, MR 1917392
Reference: [38] M.  Bildhauer, M.  Fuchs: Partial regularity for variational integrals with $(s,\mu ,q)$-growth.Calc. Var. Partial Differ. Equ. 13 (2001), 537–560. MR 1867941
Reference: [39] M.  Bildhauer, M.  Fuchs: Partial regularity for a class of anisotropic variational integrals with convex hull property.Asymptotic Anal. 32 (2002), 293–315. MR 1993652
Reference: [40] M.  Bildhauer, M.  Fuchs: $C^{1,\alpha }$-solutions to non-autonomous anisotropic variational problems.Calc. Var. Partial Differ. Equ. 24 (2005), 309–340. MR 2174429
Reference: [41] M.  Bildhauer, M.  Fuchs, and X.  Zhong: A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids.Manuscr. Math. 116 (2005), 135–156. MR 2122416
Reference: [42] S. S.  Byun: Parabolic equations with BMO  coefficients in Lipschitz domains.J. Differ. Equations 209 (2005), 229–265. Zbl 1061.35021, MR 2110205
Reference: [43] L.  Boccardo, P.  Marcellini, and C.  Sbordone: $L^\infty $-regularity for variational problems with sharp non-standard growth conditions.Boll. Unione Mat. Ital.  VII. Ser.  A 4 (1990), 219–225. MR 1066774
Reference: [44] B.  Bojarski, T.  Iwaniec: Analytical foundations of the theory of quasiconformal mappings in  $\mathbb{R}^{n}$.Ann. Acad. Sci. Fenn., Ser.  A I 8 (1983), 257–324. MR 0731786
Reference: [45] B.  Bojarski, C.  Sbordone, and I.  Wik: The Muckenhoupt class  $A_1(R)$.Stud. Math. 101 (1992), 155–163. MR 1149569
Reference: [46] E.  Bombieri: Regularity theory for almost minimal currents.Arch. Ration. Mech. Anal. 78 (1982), 99–130. Zbl 0485.49024, MR 0648941
Reference: [47] M.  Bonk, J.  Heinonen: Smooth quasiregular mappings with branching.Publ. Math., Inst. Hautes Étud. Sci. 100 (2004), 153–170. MR 2102699
Reference: [48] G.  Buttazzo, M.  Belloni: A survey of old and recent results about the gap phenomenon in the Calculus of Variations.In: Recent Developments in Well-posed Variational Problems 331, R.  Lucchetti et al. (eds.), Kluwer Academic Publishers, Dordrecht, 1995, pp. 1–27. MR 1351738
Reference: [49] G.  Buttazzo, V. J.  Mizel: Interpretation of the Lavrentiev Phenomenon by relaxation.J.  Funct. Anal. 110 (1992), 434–460. MR 1194993
Reference: [50] R.  Caccioppoli: Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali.Giorn. Mat. Battaglini, IV.  Ser. 80 (1951), 186–212. (Italian) MR 0046536
Reference: [51] L. A.  Caffarelli, I.  Peral: On $W^{1,p}$ estimates for elliptic equations in divergence form.Commun. Pure Appl. Math. 51 (1998), 1–21. MR 1486629
Reference: [52] S.  Campanato: Hölder continuity of the solutions of some non-linear elliptic systems.Adv. Math. 48 (1983), 15–43. MR 0697613
Reference: [53] S.  Campanato: Elliptic systems with non-linearity  $q$ greater than or equal to two. Regularity of the solution of the Dirichlet problem.Ann. Mat. Pura Appl., IV.  Ser. 147 (1987), 117–150. MR 0916705
Reference: [54] S.  Campanato: Hölder continuity and partial Hölder continuity results for $H^{1,q}$-solutions of nonlinear elliptic systems with controlled growth.Rend. Sem. Mat. Fis. Milano 52 (1982), 435–472. Zbl 0576.35041, MR 0802957
Reference: [55] S.  Campanato: Some new results on differential systems with monotonicity property.Boll. Unione Mat. Ital., VII.  Ser. 2 (1988), 27–57. Zbl 0662.35039
Reference: [56] M.  Carozza, N.  Fusco, and G.  Mingione: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth.Ann. Mat. Pura Appl., IV.  Ser. 175 (1998), 141–164. MR 1748219
Reference: [57] P.  Celada, G.  Cupini, and M.  Guidorzi: Existence and regularity of minimizers of nonconvex integrals with $p$-$q$ growth.ESAIM Control Optim. Calc. Var, to appear. MR 2306640
Reference: [58] Y.  Chen, S.  Levine, and R.  Rao: Functionals with $p(x)$-growth in image processing.Preprint, 2004.
Reference: [59] V.  Chiadó Piat, A.  Coscia: Hölder continuity of minimizers of functionals with variable growth exponent.Manuscr. Math. 93 (1997), 283–299. MR 1457729
Reference: [60] F.  Chiarenza, M.  Frasca, and P.  Longo: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO  coefficients.Trans. Am. Math. Soc. 336 (1993), 841–853. MR 1088476
Reference: [61] M.  Chipot, L. C.  Evans: Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations.Proc. R.  Soc. Edinb., Sect.  A 102 (1986), 291–303. MR 0852362
Reference: [62] A.  Cianchi: Boundedness of solutions to variational problems under general growth conditions.Commun. Partial Differ. Equations 22 (1997), 1629–1646. Zbl 0892.35048, MR 1469584
Reference: [63] A.  Cianchi: Local boundedness of minimizers of anisotropic functionals.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 17 (2000), 147–168. Zbl 0984.49019, MR 1753091
Reference: [64] A.  Cianchi, N.  Fusco: Gradient regularity for minimizers under general growth conditions.J.  Reine Angew. Math. 507 (1999), 15–36. MR 1670258
Reference: [65] F.  Colombini: Un teorema di regolarità alla frontiera per soluzioni di sistemi ellittici quasi lineari.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III.  Ser. 25 (1971), 115–161. (Italian) Zbl 0211.13502, MR 0289939
Reference: [66] A.  Coscia, G.  Mingione: Hölder continuity of the gradient of $p(x)$-harmonic mappings.C. R. Acad. Sci., Paris, Sér.  I, Math. 328 (1999), 363–368. MR 1675954
Reference: [67] D.  Cruz-Uribe, C. J.  Neugebauer: The structure of the reverse Hölder classes.Trans. Am. Math. Soc. 347 (1995), 2941–2960. MR 1308005
Reference: [68] G.  Cupini, N.  Fusco, and R.  Petti: Hölder continuity of local minimizers.J.  Math. Anal. Appl. 235 (1999), 578–597. MR 1703712
Reference: [69] G.  Cupini, M.  Guidorzi, and E.  Mascolo: Regularity of minimizers of vectorial integrals with $p$-$q$ growth.Nonlinear Anal., Theory Methods Appl. 54 (2003), 591–616. MR 1983438
Reference: [70] G.  Cupini, A. P.  Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem.J. Convex Anal. 10 (2003), 389–408. MR 2043864
Reference: [71] B.  Dacorogna: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations.J.  Funct. Anal. 46 (1982), 102–118. Zbl 0547.49003, MR 0654467
Reference: [72] B.  Dacorogna: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences  78.Springer-Verlag, Berlin, 1989. MR 0990890
Reference: [73] B.  Dacorogna, P.  Marcellini: Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications  37.Birkhäuser-Verlag, Boston, 1999. MR 1702252
Reference: [74] A.  Dall’Aglio, E.  Mascolo, and G.  Papi: Local boundedness for minima of functionals with nonstandard growth conditions.Rend. Mat. Appl., VII  Ser. 18 (1998), 305–326. MR 1659830
Reference: [75] L.  D’Apuzzo, C.  Sbordone: Reverse Hölder inequalities. A sharp result.Rend. Mat. Appl., VII  Ser. 10 (1990), 357–366. MR 1076164
Reference: [76] J.  Daněček, O.  John, and J.  Stará: Interior $C^{1,\gamma }$-regularity for weak solutions of nonlinear second order elliptic systems.Math. Nachr. 276 (2004), 47–56. MR 2100046
Reference: [77] E.  De  Giorgi: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari.Mem. Accad. Sci. Torino, P. I., III. Ser. 3 (1957), 25–43. (Italian) Zbl 0084.31901, MR 0093649
Reference: [78] E.  De  Giorgi: Frontiere orientate di misura minima.Seminario di Matematica della Scuola Normale Superiore, Pisa, 1960–61. (Italian)
Reference: [79] E.  De  Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Unione Mat. Ital., IV.  Ser. 1 (1968), 135–137. (Italian) MR 0227827
Reference: [80] E.  DiBenedetto: Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations.Arch. Ration. Mech. Anal. 100 (1988), 129–147. Zbl 0708.35017, MR 0913961
Reference: [81] E.  DiBenedetto: Degenerate Parabolic Equations. Universitext.Springer-Verlag, New York, 1993. MR 1230384
Reference: [82] E.  DiBenedetto, A.  Friedman: Hölder estimates for nonlinear degenerate parabolic systems.J. Reine Angew. Math. 357 (1985), 1–22. MR 0783531
Reference: [83] E.  DiBenedetto, J. J.  Manfredi: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems.Am. J. Math. 115 (1993), 1107–1134. MR 1246185
Reference: [84] E.  DiBenedetto, N.  Trudinger: Harnack inequalities for quasiminima of variational integrals.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 1 (1984), 295–308. MR 0778976
Reference: [85] L.  Diening: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657–700. MR 2166733
Reference: [86] L.  Diening, P.  Hästö, and A.  Nekvinda: Open problems in variable exponent Lebesgue and Sobolev spaces.In: FSDONA Proceedings, Milovy, Czech Republic, 2004, P. Drábek, J. Rákosník (eds.), 2004, pp. 38–58.
Reference: [87] L.  Diening, M.  Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J.  Reine Angew. Math. 563 (2003), 197–220. MR 2009242
Reference: [88] G.  Di  Fazio: $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients.Boll. Unione Mat. Ital., VII.  Ser.,  A 10 (1996), 409–420. MR 1405255
Reference: [89] A.  Dolcini, L.  Esposito, and N.  Fusco: $C^{0,\alpha }$ regularity of $\omega $-minima.Boll. Unione Mat. Ital., VII.  Ser., A 10 (1996), 113–125. MR 1386250
Reference: [90] G.  Dolzmann, J.  Kristensen: Higher integrability of minimizing Young measures.Calc. Var. Partial Differ. Equ. 22 (2005), 283–301. MR 2118900
Reference: [91] F.  Duzaar, A.  Gastel: Nonlinear elliptic systems with Dini continuous coefficients.Arch. Math. 78 (2002), 58–73. MR 1887317
Reference: [92] F.  Duzaar, A.  Gastel, and J. F.  Grotowski: Partial regularity for almost minimizers of quasi-convex integrals.SIAM J. Math. Anal. 32 (2000), 665–687. MR 1786163
Reference: [93] F.  Duzaar, A.  Gastel, and G.  Mingione: Elliptic systems, singular sets and Dini continuity.Commun. Partial Differ. Equations 29 (2004), 1215–1240. MR 2097582
Reference: [94] F.  Duzaar, J. F.  Grotowski: Optimal interior partial regularity for nonlinear elliptic systems: The method of $A$-harmonic approximation.Manuscr. Math. 103 (2000), 267–298. MR 1802484
Reference: [95] F.  Duzaar, J. F.  Grotowski, and M.  Kronz: Partial and full boundary regularity for minimizers of functionals with nonquadratic growth.J.  Convex Anal. 11 (2004), 437–476. MR 2158914
Reference: [96] F.  Duzaar, J. F.  Grotowski, and M.  Kronz: Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth.Ann. Mat. Pura Appl., IV.  Ser. 184 (2005), 421–448. MR 2177809
Reference: [97] F.  Duzaar, J. F.  Grotowski, and K.  Steffen: Optimal regularity results via $A$-harmonic approximation.In: Geometric Analysis and Nonlinear Partial Differential Equations, S.  Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 265–296. MR 2008343
Reference: [98] F.  Duzaar, J.  Kristensen, and G.  Mingione: The existence of regular boundary points for non-linear elliptic systems.J. Reine Angew. Math (to appear). MR 2300451
Reference: [99] F.  Duzaar, M.  Kronz: Regularity of $\omega $-minimizers of quasi-convex variational integrals with polynomial growth.Differ. Geom. Appl. 17 (2002), 139–152. MR 1925762
Reference: [100] F.  Duzaar, G.  Mingione: The $p$-harmonic approximation and the regularity of $p$-harmonic maps.Calc. Var. Partial Differ. Equ. 20 (2004), 235–256. MR 2062943
Reference: [101] F.  Duzaar, G.  Mingione: Regularity for degenerate elliptic problems via $p$-harmonic approximation.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 735–766. MR 2086757
Reference: [102] F.  Duzaar, G.  Mingione: Second order parabolic systems, optimal regularity, and singular sets of solutions.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 22 (2005), 705–751. MR 2172857
Reference: [103] F.  Duzaar, G.  Mingione: Non-autonomous functionals with $(p,q)$-growth: regularity in borderline cases.In prepration.
Reference: [104] F.  Duzaar, K.  Steffen: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals.J.  Reine Angew. Math. 546 (2002), 73–138. MR 1900994
Reference: [105] I.  Ekeland: On the variational principle.J.  Math. Anal. Appl. 47 (1974), 324–353. Zbl 0286.49015, MR 0346619
Reference: [106] A.  Elcrat, N. G.  Meyers: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions.Duke Math.  J. 42 (1975), 121–136. MR 0417568
Reference: [107] M.  Eleuteri: Hölder continuity results for a class of functionals with non-standard growth.Boll. Unione Mat. Ital. Sez.  B Artic. Ric. Mat. 7 (2004), 129–157. Zbl 1178.49045, MR 2044264
Reference: [108] L.  Esposito, F.  Leonetti, and G.  Mingione: Regularity for minimizers of functionals with $p$-$q$ growth.Nonlinear Differ. Equ. Appl. 6 (1999), 133–148. MR 1694803
Reference: [109] L.  Esposito, F.  Leonetti, and G.  Mingione: Higher integrability for minimizers of integral functionals with $(p,q)$  growth.J.  Differ. Equations 157 (1999), 414–438. MR 1713266
Reference: [110] L.  Esposito, F.  Leonetti, and G.  Mingione: Regularity results for minimizers of irregular integrals with $(p,q)$  growth.Forum Math. 14 (2002), 245–272. MR 1880913
Reference: [111] L.  Esposito, F.  Leonetti, and G.  Mingione: Sharp regularity for functionals with $(p,q)$  growth.J.  Differ. Equations 204 (2004), 5–55. MR 2076158
Reference: [112] L.  Esposito, G.  Mingione: A regularity theorem for $\omega $-minimizers of integral functionals.Rend. Mat. Appl., VII.  Ser. 19 (1999), 17–44. MR 1710133
Reference: [113] L.  Esposito, G.  Mingione: Partial regularity for minimizers of convex integrals with $L\log L$-growth.Nonlinear Differ. Equ. Appl. 7 (2000), 107–125. MR 1746116
Reference: [114] L.  Esposito, G.  Mingione: Partial regularity for minimizers of degenerate polyconvex energies.J. Convex Anal. 8 (2001), 1–38. MR 1829054
Reference: [115] L. C.  Evans: Quasiconvexity and partial regularity in the calculus of variations.Arch. Ration. Mech. Anal. 95 (1986), 227–252. Zbl 0627.49006, MR 0853966
Reference: [116] L. C.  Evans, R. F.  Gariepy: On the partial regularity of energy-minimizing, area-preserving maps.Calc. Var. Partial Differ. Equ. 9 (1999), 357–372. MR 1731471
Reference: [117] E. B.  Fabes, D. W.  Stroock: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash.Arch. Ration. Mech. Anal. 96 (1986), 327–338. MR 0855753
Reference: [118] X.  Fan, D.  Zhao: A class of De Giorgi type and Hölder continuity.Nonlinear Anal., Theory Methods Appl. 36 (1999), 295–318. MR 1688232
Reference: [119] X.  Fan, D.  Zhao: The quasi-minimizer of integral functionals with $m(x)$ growth conditions.Nonlinear Anal., Theory Methods Appl. 39 (2000), 807–816. MR 1736389
Reference: [120] D.  Faraco, P.  Koskela, and X.  Zhong: Mappings of finite distortion: the degree of regularity.Adv. Math. 190 (2005), 300–318. MR 2102659
Reference: [121] V.  Ferone, N.  Fusco: Continuity properties of minimizers of integral functionals in a limit case.J.  Math. Anal. Appl. 202 (1996), 27–52. MR 1402586
Reference: [122] I.  Fonseca, N.  Fusco: Regularity results for anisotropic image segmentation models.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 24 (1997), 463–499. MR 1612389
Reference: [123] I.  Fonseca, N.  Fusco, P.  Marcellini: An existence result for a nonconvex variational problem via regularity.ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. MR 1925022
Reference: [124] I.  Fonseca, G.  Leoni, and J.  Malý: Weak continuity and lower semicontinuity results for determinants.Arch. Ration. Mech. Anal. 178 (2005), 411–448. MR 2196498
Reference: [125] I.  Fonseca, J.  Malý: Relaxation of multiple integrals below the growth exponent.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 14 (1997), 309–338. MR 1450951
Reference: [126] I.  Fonseca, J.  Malý, and G.  Mingione: Scalar minimizers with fractal singular sets.Arch. Ration. Mech. Anal. 172 (2004), 295–307. MR 2058167
Reference: [127] M.  Foss: Examples of the Lavrentiev Phenomenon with continuous Sobolev exponent dependence.J.  Convex Anal. 10 (2003), 445–464. Zbl 1084.49002, MR 2043868
Reference: [128] M.  Foss: A condition sufficient for the partial regularity of minimizers in two-dimensional nonlinear elasticity.In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math.  370, P.  Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005. MR 2126701
Reference: [129] M.  Foss: Global regularity for almost minimizers of nonconvex variational problems.Preprint, 2006. MR 2372803
Reference: [130] M.  Foss, W. J.  Hrusa, and V. J.  Mizel: The Lavrentiev gap phenomenon in nonlinear elasticity.Arch. Ration. Mech. Anal. 167 (2003), 337–365. MR 1981861
Reference: [131] M.  Foss, W. J.  Hrusa, and V. J.  Mizel: The Lavrentiev phenomenon in nonlinear elasticity.J.  Elasticity 72 (2003), 173–181. MR 2064223
Reference: [132] J.  Frehse: A note on the Hölder continuity of solutions of variational problems.Abh. Math. Semin. Univ. Hamb. 43 (1975), 59–63. Zbl 0316.49008, MR 0377648
Reference: [133] J.  Frehse, G. A.  Seregin: Regularity of Solutions to Variational Problems of the Deformation Theory of Plasticity with Logarithmic Hardening. Amer. Math. Soc. Transl. Ser. 2, 193.Amer. Math. Soc., Providence, 1999. MR 1736908
Reference: [134] M.  Fuchs: Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions.Analysis 7 (1987), 83–93. Zbl 0624.35032, MR 0885719
Reference: [135] M.  Fuchs, G.  Li: Global gradient bounds for relaxed variational problems.Manuscr. Math. 92 (1997), 287–302. Zbl 0892.49027, MR 1437505
Reference: [136] M.  Fuchs, G.  Mingione: Full $C^{1,\alpha }$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth.Manuscr. Math. 102 (2000), 227–250. MR 1771942
Reference: [137] M.  Fuchs, G. A.  Seregin: Some remarks on non-Newtonian fluids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids.Math. Models Methods Appl. Sci. 7 (1997), 405–433. MR 1443793
Reference: [138] M.  Fuchs, G. A.  Seregin: A regularity theory for variational integrals with $L\ln L$-growth.Calc. Var. Partial Differ. Equ. 6 (1998), 171–187. MR 1606481
Reference: [139] M.  Fuchs, G. A.  Seregin: Hölder continuity for weak extremals of some two-dimensional variational problems related to nonlinear elasticity.Adv. Math. Sci. Appl. 7 (1997), 413–425. MR 1454674
Reference: [140] M.  Fuchs, G. A.  Seregin: Partial regularity of the deformation gradient for some model problems in nonlinear two-dimensional elasticity.St. Petersbg. Math.  J. 6 (1995), 1229–1248. MR 1322123
Reference: [141] N.  Fusco: Quasiconvexity and semicontinuity for higher-order multiple integrals.Ric. Mat. 29 (1980), 307–323. MR 0632213
Reference: [142] N.  Fusco, J. E.  Hutchinson: $C^{1,\alpha }$-partial regularity of functions minimising quasiconvex integrals.Manuscr. Math. 54 (1986), 121–143. MR 0808684
Reference: [143] N.  Fusco, J. E.  Hutchinson: Partial regularity for minimisers of certain functionals having nonquadratic growth.Ann. Mat. Pura Appl., IV.  Ser. 155 (1989), 1–24. MR 1042826
Reference: [144] N.  Fusco, J. E.  Hutchinson: Partial regularity in problems motivated by nonlinear elasticity.SIAM J.  Math. Anal. 22 (1991), 1516–1551. MR 1129398
Reference: [145] N.  Fusco, J. E.  Hutchinson: Partial regularity and everywhere continuity for a model problem from non-linear elasticity.J.  Aust. Math. Soc., Ser.  A 57 (1994), 158–169. MR 1288671
Reference: [146] N.  Fusco, C.  Sbordone: Higher integrability from reverse Jensen inequalities with different supports.In: Partial Differential Equations and the Calculus of Variations. Essays in Honor of Ennio De Giorgi, Birkhäuser-Verlag, Boston, 1989, pp. 541–562. MR 1034020
Reference: [147] N.  Fusco, C.  Sbordone: Local boundedness of minimizers in a limit case.Manuscr. Math. 69 (1990), 19–25. MR 1070292
Reference: [148] N.  Fusco, C.  Sbordone: Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions.Commun. Pure Appl. Math. 43 (1990), 673–683. MR 1057235
Reference: [149] N.  Fusco, C.  Sbordone: Some remarks on the regularity of minima of anisotropic integrals.Commun. Partial Differ. Equations 18 (1993), 153–167. MR 1211728
Reference: [150] F. W.  Gehring: The $L^p$-integrability of the partial derivatives of a quasiconformal mapping.Acta Math. 130 (1973), 265–277. MR 0402038
Reference: [151] M.  Giaquinta: A counter-example to the boundary regularity of solutions to quasilinear systems.Manuscr. Math. 24 (1978), 217–220. MR 0492658
Reference: [152] M.  Giaquinta: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies  105.Princeton University Press, Princeton, 1983. MR 0717034
Reference: [153] M.  Giaquinta: Direct methods for regularity in the calculus of variations.In: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol.  VI (Paris, 1982/1983). Res. Notes in Math.  109, Pitman, Boston, 1984, pp. 258–274. Zbl 0553.49011, MR 0772245
Reference: [154] M.  Giaquinta: The problem of the regularity of minimizers.In: Proceedings of the International Congress of Mathematicians, Vol.  2 (Berkeley, California, 1986), Amer. Math. Soc., Providence, 1987, pp. 1072–1083. Zbl 0667.49029, MR 0934310
Reference: [155] M.  Giaquinta: Growth conditions and regularity. A counterexample.Manuscr. Math. 59 (1987), 245–248. Zbl 0638.49005, MR 0905200
Reference: [156] M.  Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics.Birkhäuser-Verlag, Basel, 1993. MR 1239172
Reference: [157] M.  Giaquinta, E.  Giusti: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31–46. MR 0666107
Reference: [158] M.  Giaquinta, E.  Giusti: Differentiability of minima of nondifferentiable functionals.Invent. Math. 72 (1983), 285–298. MR 0700772
Reference: [159] M.  Giaquinta, E.  Giusti: Global $C^{1,\alpha }$-regularity for second order quasilinear elliptic equations in divergence form.J.  Reine Angew. Math. 351 (1984), 55–65. MR 0749677
Reference: [160] M.  Giaquinta, G.  Modica: Almost-everywhere regularity for solutions of nonlinear elliptic systems.Manuscr. Math. 28 (1979), 109–158. MR 0535699
Reference: [161] M.  Giaquinta, G.  Modica: Regularity results for some classes of higher order nonlinear elliptic systems.J.  Reine Angew. Math. 311/312 (1979), 145–169. MR 0549962
Reference: [162] M.  Giaquinta, G.  Modica: Remarks on the regularity of the minimizers of certain degenerate functionals.Manuscr. Math. 57 (1986), 55–99. MR 0866406
Reference: [163] M.  Giaquinta, M.  Struwe: On the partial regularity of weak solutions on nonlinear parabolic systems.Math.  Z. 179 (1982), 437–451. MR 0652852
Reference: [164] D.  Gilbarg, N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol.  224.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443
Reference: [165] E.  Giusti: Direct methods in the calculus of variations.World Scientific, Singapore, 2003. Zbl 1028.49001, MR 1962933
Reference: [166] E.  Giusti, M.  Miranda: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni.Boll. Unione Mat. Ital., IV.  Ser. 1 (1968), 219–226. (Italian) MR 0232265
Reference: [167] E.  Giusti, M.  Miranda: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari.Arch. Ration. Mech. Anal. 31 (1968), 173–184. (Italian) MR 0235264
Reference: [168] M.  Gromov: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete.Springer-Verlag, Berlin, 1986. MR 0864505
Reference: [169] J. F.  Grotowski: Boundary regularity for nonlinear elliptic systems.Calc. Var. Partial Differ. Equ. 15 (2002), 353–388. Zbl 1148.35315, MR 1938819
Reference: [170] J. F.  Grotowski: Boundary regularity for quasilinear elliptic systems.Commun. Partial Differ. Equations 27 (2002), 2491-2512. Zbl 1129.35352, MR 1944037
Reference: [171] C.  Hamburger: Regularity of differential forms minimizing degenerate elliptic functionals.J. Reine Angew. Math. 431 (1992), 7–64. Zbl 0776.35006, MR 1179331
Reference: [172] C.  Hamburger: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations.Ann. Mat. Pura Appl., IV.  Ser. 169 (1995), 321–354. Zbl 0852.35031, MR 1378480
Reference: [173] C.  Hamburger: Partial regularity for minimizers of variational integrals with discontinuous integrands.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 13 (1996), 255–282. Zbl 0863.35022, MR 1395672
Reference: [174] C.  Hamburger: Partial boundary regularity of solutions of nonlinear superelliptic systems.(to appear). MR 2310958
Reference: [175] C.  Hamburger: Optimal regularity of minimzers of quasiconvex variational integrals.ESAIM Control Optim. Calc. Var (to appear). MR 2351395
Reference: [176] W.  Hao, S.  Leonardi, and J.  Nečas: An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 23 (1996), 57–67. MR 1401417
Reference: [177] R. M.  Hardt: Singularities of harmonic maps.Bull. Am. Math. Soc., New Ser. 34 (1997), 15–34. Zbl 0871.58026, MR 1397098
Reference: [178] R. M.  Hardt, F. G.  Lin, and C. Y.  Wang: The $p$-energy minimality of $x/|x|$.Commun. Anal. Geom. 6 (1998), 141–152. MR 1619840
Reference: [179] P.  Harjulehto, P.  Hästö, and M.  Koskenoja: The Dirichlet energy integral on intervals in variable exponent Sobolev spaces.Z. Anal. Anwend. 22 (2003), 911–923. MR 2036936
Reference: [180] P.  Hästö: Counter-examples of regularity in variable exponent Sobolev spaces.In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math.  370, P.  Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005, pp. 133–143. Zbl 1084.46025, MR 2126704
Reference: [181] J.  Heinonen, T.  Kilpeläinen, and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs.Clarendon Press, Oxford, 1993. MR 1207810
Reference: [182] S. Hildebrandt, H.  Kaul, and K.-O.  Widman: An existence theorem for harmonic mappings of Riemanninan manifolds.Acta Math. 138 (1977), 1–16. MR 0433502
Reference: [183] S. Hildebrandt, K.-O.  Widman: Some regularity results for quasilinear elliptic systems of second order.Math. Z. 142 (1975), 67–86. MR 0377273
Reference: [184] M.-C.  Hong: Existence and partial regularity in the calculus of variations.Ann. Mat. Pura Appl., IV.  Ser. 149 (1987), 311–328. Zbl 0648.49008, MR 0932791
Reference: [185] M.-C.  Hong: Some remarks on the minimizers of variational integrals with nonstandard growth conditions.Boll. Unione Mat. Ital., VII.  Ser.,  A 6 (1992), 91–101. MR 1164739
Reference: [186] M.-C.  Hong: On the minimality of the $p$-harmonic map $\frac{x}{|x|}\: B^ n\rightarrow S^ {n-1}$.Calc. Var. Partial Differ. Equ. 13 (2001), 459–468. Zbl 1002.94020, MR 1867937
Reference: [187] P.-A.  Ivert: Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung.Manuscr. Math. 30 (1979), 53–88. (German) Zbl 0429.35033, MR 0552363
Reference: [188] P.-A.  Ivert: Partial regularity of vector valued functions minimizing variational integrals.Preprint Univ. Bonn, 1982.
Reference: [189] T.  Iwaniec: Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators.Stud. Math. 75 (1983), 293–312. MR 0722254
Reference: [190] T.  Iwaniec: $p$-harmonic tensors and quasiregular mappings.Ann. Math. 136 (1992), 589–624. Zbl 0785.30009, MR 1189867
Reference: [191] T.  Iwaniec: The Gehring lemma.In: Quasiconformal Mappings and Analysis, Ann Arbor, 1995, P.  Duren (ed.), Springer-Verlag, New York, 1998, pp. 181–204. Zbl 0888.30017, MR 1488451
Reference: [192] T.  Iwaniec, G.  Martin: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs.Oxford University Press, Oxford, 2001. MR 1859913
Reference: [193] T.  Iwaniec, C.  Sbordone: Quasiharmonic fields.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 18 (2001), 519–572. MR 1849688
Reference: [194] O.  John, J.  Malý, and J.  Stará: Nowhere continuous solutions to elliptic systems.Commentat. Math. Univ. Carol. 30 (1989), 33–43. MR 0995699
Reference: [195] J.  Jost, M.  Meier: Boundary regularity for minima of certain quadratic functionals.Math. Ann. 262 (1983), 549–561. MR 0696525
Reference: [196] V.  Kokilashvili, S.  Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Rev. Mat. Iberoam. 20 (2004), 493–515. MR 2073129
Reference: [197] J.  Kinnunen: Sharp Results on Reverse Hölder Inequalities.Ann. Acad. Sci. Fenn. Ser.  A  I. Math. Dissertationes No 95, Suomalainen Tiedeakatemia, Helsinki, 1994. Zbl 0816.26008, MR 1283432
Reference: [198] J.  Kinnunen, J. L.  Lewis: Higher integrability for parabolic systems of $p$-Laplacian type.Duke Math.  J. 102 (2000), 253–271. MR 1749438
Reference: [199] J.  Kinnunen, S.  Zhou: A local estimate for nonlinear equations with discontinuous coefficients.Commun. Partial Differ. Equations 24 (1999), 2043–2068. MR 1720770
Reference: [200] B.  Kirchheim, S.  Müller, and V.  Šverák: Studying nonlinear pde by geometry in matrix space.In: Geometric Analysis and Nonlinear Partial Differential Equations, S.  Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 347–395. MR 2008346
Reference: [201] A.  Koshelev: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics  1614.Springer-Verlag, Berlin, 1995. MR 1442954
Reference: [202] J.  Kristensen: On the non-locality of quasiconvexity.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 1–13. Zbl 0932.49015, MR 1668552
Reference: [203] J.  Kristensen: Lower semicontinuity in spaces of weakly differentiable functions.Math. Ann. 313 (1999), 653–710. Zbl 0924.49012, MR 1686943
Reference: [204] J.  Kristensen, G.  Mingione: The singular set of $\omega $-minima.Arch. Ration. Mech. Anal. 177 (2005), 93–114. MR 2187315
Reference: [205] J.  Kristensen, G.  Mingione: Non-differentiable functionals and singular sets of minima.C. R. Acad. Sci. Paris 340 (2005), 93–98. MR 2112048
Reference: [206] J.  Kristensen, G.  Mingione: The singular set of minima of integral functionals.Arch. Ration. Mech. Anal. 180 (2006), 331–398. MR 2214961
Reference: [207] J.  Kristensen, G.  Mingione: The singular set of Lipschitzian minima of multiple integrals.Arch. Ration. Mech. Anal (to appear). MR 2299766
Reference: [208] J.  Kristensen, G.  Mingione: The singular set of solutions to elliptic problems with rough coefficients.In preparation.
Reference: [209] J.  Kristensen, A.  Taheri: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations.Arch. Ration. Mech. Anal. 170 (2003), 63–89. MR 2012647
Reference: [210] M.  Kronz: Quasimonotone systems of higher order.Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 6 (2003), 459–480. MR 1988216
Reference: [211] M.  Kronz: Boundary regularity for almost minimizers of quasiconvex variational problems.Nonlinear Differ. Equations Appl. 12 (2005), 351–382. Zbl 1116.49019, MR 2186336
Reference: [212] M.  Kronz: Habilitation Thesis.University of Erlangen-Nürneberg, Erlangen, 2006.
Reference: [213] O. A.  Ladyzhenskaya, N. N.  Ural’tseva: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering 46.Academic Press, New York-London, 1968. MR 0244627
Reference: [214] O. A.  Ladyzhenskaya, N. N.  Ural’tseva: Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations.Commun. Pure Appl. Math. Ser. IX 23 (1970), 677–703. MR 0265745
Reference: [215] O. A.  Ladyzhenskaya, V. A.  Solonnikov, and N. N.  Ural’tseva: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol.  23.Amer. Math. Soc., Providence, 1968.
Reference: [216] F.  Leonetti: Maximum principle for vector-valued minimizers of some integral functionals.Boll. Unione Mat. Ital., VII.  Ser.,  A 5 (1991), 51–56. Zbl 0729.49015, MR 1101010
Reference: [217] F.  Leonetti: Higher differentiability for weak solutions of elliptic systems with nonstandard growth conditions.Ric. Mat. 42 (1993), 101–122. Zbl 0855.35022, MR 1283808
Reference: [218] F.  Leonetti: Higher integrability for minimizers of integral functionals with nonstandard growth.J.  Differ. Equations 112 (1994), 308–324. Zbl 0813.49030, MR 1293473
Reference: [219] F.  Leonetti: Regularity results for minimizers of integral functionals with nonstandard growth.Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 425–429. Zbl 0851.49025, MR 1366070
Reference: [220] F.  Leonetti: Pointwise estimates for a model problem in nonlinear elasticity.Forum Mathematicum 18 (2006), 529–535. Zbl 1125.49029, MR 2237933
Reference: [221] F.  Leonetti, V.  Nesi: Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W.  Milton.J.  Math. Pures Appl. 76 (1997), 109–124. MR 1432370
Reference: [222] G. M.  Lieberman: Gradient estimates for a class of elliptic systems.Ann. Mat. Pura Appl., IV.  Ser. 164 (1993), 103–120. Zbl 0819.35019, MR 1243951
Reference: [223] G. M.  Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations.Commun. Partial Differ. Equations 16 (1991), 311–361. Zbl 0742.35028, MR 1104103
Reference: [224] G. M.  Lieberman: On the regularity of the minimizer of a functional with exponential growth.Commentat. Math. Univ. Carol. 33 (1992), 45–49. Zbl 0776.49026, MR 1173745
Reference: [225] G. M.  Lieberman: Gradient estimates for a new class of degenerate elliptic and parabolic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 21 (1994), 497–522. Zbl 0839.35018, MR 1318770
Reference: [226] G. M.  Lieberman: Gradient estimates for anisotropic elliptic equations.Adv. Differ. Equ. 10 (2005), 767–182. Zbl 1144.35388, MR 2152352
Reference: [227] P.  Lindqvist: On the definition and properties of $p$-superharmonic functions.J.  Reine Angew. Math. 365 (1986), 67–79. Zbl 0572.31004, MR 0826152
Reference: [228] J.- L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. (French) Zbl 0189.40603, MR 0259693
Reference: [229] G. Lucas & co.: “Star Wars Episode  5: The empire strikes back”—Act, Darth Vader: “Come with me to the Dark Side...”.(1982).
Reference: [230] J.  Malý, W. P.  Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, 51.Amer. Math. Soc., Providence, 1997. MR 1461542
Reference: [231] J. J.  Manfredi: Regularity for minima of functionals with $p$-growth.J.  Differ. Equations 76 (1988), 203–212. Zbl 0674.35008, MR 0969420
Reference: [232] J. J.  Manfredi: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations.PhD. Thesis, University of Washington, St. Louis, .
Reference: [233] P.  Marcellini: On the definition and the lower semicontinuity of certain quasiconvex integrals.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 391–409. Zbl 0609.49009, MR 0868523
Reference: [234] P.  Marcellini: Un esemple de solution discontinue d’un problème variationnel dans le case scalaire.Ist. Mat. “U. Dini" No. 11, Firenze, 1987. (Italian)
Reference: [235] P.  Marcellini: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions.Arch. Ration. Mech. Anal. 105 (1989), 267–284. Zbl 0667.49032, MR 0969900
Reference: [236] P.  Marcellini: Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions.J.  Differ. Equations 90 (1991), 1–30. Zbl 0724.35043, MR 1094446
Reference: [237] P.  Marcellini: Regularity for elliptic equations with general growth conditions.J.  Differ. Equations 105 (1993), 296–333. Zbl 0812.35042, MR 1240398
Reference: [238] P.  Marcellini: Everywhere regularity for a class of elliptic systems without growth conditions.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 23 (1996), 1–25. Zbl 0922.35031, MR 1401415
Reference: [239] P.  Marcellini: Regularity for some scalar variational problems under general growth conditions.J.  Optimization Theory Appl. 90 (1996), 161–181. Zbl 0901.49030, MR 1397651
Reference: [240] P.  Marcellini: Alcuni recenti sviluppi nei problemi 19-esimo e 20-esimo di Hilbert.Boll. Unione Mat. Ital., VII.  Ser., A 11 (1997), 323–352. (Italian)
Reference: [241] P.  Marcellini, G.  Papi: Nonlinear elliptic systems with general growth.J.  Differ. Equations 221 (2006), 412–443. MR 2196484
Reference: [242] P.  Marcellini, C.  Sbordone: On the existence of minima of multiple integrals of the calculus of variations.J.  Math. Pures Appl., IX.  Sér. 62 (1983), 1–9. MR 0700045
Reference: [243] E.  Mascolo, G.  Migliorini: Everywhere regularity for vectorial functionals with general growth.ESAIM, Control Optim. Calc. Var. 9 (2003), 399–418. MR 1988669
Reference: [244] E.  Mascolo, G.  Papi: Local boundedness of minimizers of integrals of the calculus of variations.Ann. Mat. Pura Appl., IV.  Ser. 167 (1994), 323–339. MR 1313560
Reference: [245] E.  Mascolo, G.  Papi: Harnack inequality for minimizers of integral functionals with general growth conditions.NoDEA, Nonlinear Differ. Equ. Appl. 3 (1996), 231–244. MR 1385885
Reference: [246] P.  Mattila: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Adv. Math., 44.Cambridge University Press, Cambridge, 1995. MR 1333890
Reference: [247] V.  Maz’ya: Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients.Funct. Anal. Appl. 2 (1968), 230–234. MR 0237946
Reference: [248] G.  Mingione: The singular set of solutions to non-differentiable elliptic systems.Arch. Ration. Mech. Anal. 166 (2003), 287–301. Zbl 1142.35391, MR 1961442
Reference: [249] G.  Mingione: Bounds for the singular set of solutions to non linear elliptic systems.Calc. Var. Partial Differ. Equ. 18 (2003), 373–400. Zbl 1045.35024, MR 2020367
Reference: [250] G.  Mingione, D.  Mucci: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration.SIAM J.  Math. Anal. 36 (2005), 1540–1579. MR 2139562
Reference: [251] G.  Mingione, F.  Siepe: Full $C^{1,\alpha }$-regularity for minimizers of integral functionals with $L\log L$-growth.Z. Anal. Anwend. 18 (1999), 1083–1100. MR 1736253
Reference: [252] C. B.  Morrey: Review to [77].Mathematical Reviews  MR0093649 (20 #172).
Reference: [253] C. B.  Morrey: Second order elliptic equations in several variables and Hölder continuity.Math.  Z. 72 (1959), 146–164. Zbl 0094.07802, MR 0120446
Reference: [254] C. B.  Morrey: Quasi-convexity and the lower semicontinuity of multiple integrals.Pac. J.  Math. 2 (1952), 25–53. Zbl 0046.10803, MR 0054865
Reference: [255] C. B.  Morrey: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, 130.Springer-Verlag, Berlin-Heidelberg-New York, 1966. MR 0202511
Reference: [256] C. B.  Morrey: Partial regularity results for non-linear elliptic systems.J.  Math. Mech. 17 (1968), 649–670. Zbl 0175.11901, MR 0237947
Reference: [257] G.  Moscariello, L.  Nania: Hölder continuity of minimizers of functionals with nonstandard growth conditions.Ric. Mat. 40 (1991), 259–273. MR 1194158
Reference: [258] J.  Moser: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations.Commun. Pure Appl. Math. 13 (1960), 457–468. Zbl 0111.09301, MR 0170091
Reference: [259] J.  Moser: On Harnack’s theorem for elliptic differential equations.Commun. Pure Appl. Math. 14 (1961), 577–591. Zbl 0111.09302, MR 0159138
Reference: [260] J.  Moser: A Harnack inequality for parabolic differential equations.Commun. Pure Appl. Math. 17 (1964), 101–134. Zbl 0149.06902, MR 0159139
Reference: [261] S.  Müller: Variational models for microstructure and phase transitions.In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Math.,  1713, S.  Hildebrandt (ed.), Springer-Verlag, Berlin, 1999, pp. 85–210. MR 1731640
Reference: [262] S.  Müller, V.  Šverák: Convex integration for Lipschitz mappings and counterexamples to regularity.Ann. Math. 157 (2003), 715–742. MR 1983780
Reference: [263] J.  Musielak: Orlicz spaces and Modular spaces. Lecture Notes in Mathematics, 1034.Springer-Verlag, Berlin, 1983. MR 0724434
Reference: [264] J.  Nash: Continuity of solutions of parabolic and elliptic equations.Am. J.  Math. 80 (1958), 931–954. Zbl 0096.06902, MR 0100158
Reference: [265] J.  Nečas: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity.In: Theor. Nonlin. Oper., Constr. Aspects. Proc. 4th Int. Summer School, Akademie-Verlag, Berlin, 1975, pp. 197–206. MR 0509483
Reference: [266] J.  Nečas, O.  John, and J.  Stará: Counterexample to the regularity of weak solution of elliptic systems.Commentat. Math. Univ. Carol. 21 (1980), 145–154. MR 0566246
Reference: [267] L.  Nirenberg: Remarks on strongly elliptic partial differential equations.Commun. Pure Appl. Math. 8 (1955), 649–675. Zbl 0067.07602, MR 0075415
Reference: [268] D.  Phillips: On one-homogeneous solutions to elliptic systems in two dimensions.C. R., Math., Acad. Sci. Paris 335 (2002), 39–42. Zbl 1006.35031, MR 1920431
Reference: [269] L.  Piccinini, S.  Spagnolo: On the Hölder continuity of solutions of second order elliptic equations in two variables.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III.  Ser. 26 (1972), 391–402. MR 0361422
Reference: [270] K. R.  Rajagopal, T.  Růžička: Mathematical modeling of electrorheological materials.Contin. Mech. and Thermodyn. 13 (2001), 59–78.
Reference: [271] M. M.  Rao, Z. D.  Ren: Theory of Orlicz spaces.Pure and Applied Mathematics, 146 Marcel Dekker, New York, 1991. MR 1113700
Reference: [272] J.-P.  Raymond: Lipschitz regularity of solutions of some asymptotically convex problems.Proc. R. Soc. Edinb., Sect. A 117 (1991), 59–73. Zbl 0725.49012, MR 1096219
Reference: [273] T.  Rivière: Everywhere discontinuous harmonic maps into spheres.Acta Math. 175 (1995), 197–226. MR 1368247
Reference: [274] M.  Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748.Springer-Verlag, Berlin, 2000. MR 1810360
Reference: [275] A.  Salli: On the Minkowski dimension of strongly porous fractal sets in  ${R}^n$.Proc. Lond. Math. Soc., III.  Ser. 62 (1991), 353–372. MR 1085645
Reference: [276] S.  Samko: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators.Integral Transforms Spec. Funct. 16 (2005), 461–482. Zbl 1069.47056, MR 2138062
Reference: [277] C.  Sbordone: Rearrangement of functions and reverse Hölder inequalities. Ennio De Giorgi colloq., H.  Poincaré Inst., Paris, 1983.Res. Notes Math. 125 (1985), 139–148. MR 0909714
Reference: [278] R.  Schoen, K.  Uhlenbeck: A regularity theory for harmonic maps.J. Differ. Geom. 17 (1982), 307–335. MR 0664498
Reference: [279] J.  Serrin: Local behavior of solutions of quasi-linear equations.Acta Math. 111 (1964), 247–302. Zbl 0128.09101, MR 0170096
Reference: [280] L.  Simon: Global estimates of Hölder continuity for a class of divergence-form elliptic equations.Arch. Ration. Mech. Anal. 56 (1974), 253–272. MR 0352696
Reference: [281] L.  Simon: Interior gradient bounds for non-uniformly elliptic equations.Indiana Univ. Math.  J. 25 (1976), 821–855. MR 0412605
Reference: [282] L.  Simon: Rectifiability of the singular set of energy minimizing maps.Calc. Var. Partial Differ. Equ. 3 (1995), 1–65. Zbl 0818.49023, MR 1384836
Reference: [283] L.  Simon: Lectures on Regularity and Singularities of Harmonic Maps.Birkhäuser-Verlag, Basel-Boston-Berlin, 1996. MR 1399562
Reference: [284] J.  Souček: Singular solutions to linear elliptic systems.Commentat. Math. Univ. Carol. 25 (1984), 273–281. MR 0768815
Reference: [285] G.  Stampacchia: Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hölderiane.Ann. Mat. Pura Appl., IV.  Ser. 51 (1960), 1–37. (Italian) MR 0126601
Reference: [286] G.  Stampacchia: Hilbert’s twenty-third problem: extensions of the calculus of variations.In: Mathematical developments arising from Hilbert problems. Proc. Symp. Pure Math. 28, De Kalb 1974, , , 1976, pp. 611–628. Zbl 0345.49002, MR 0428150
Reference: [287] P.  Sternberg, G.  Williams, and W. P.  Ziemer: Existence, uniqueness, and regularity for functions of least gradient.J.  Reine Angew. Math. 430 (1992), 35–60. MR 1172906
Reference: [288] E. W.  Stredulinsky: Higher integrability from reverse Hölder inequalities.Indiana Univ. Math.  J. 29 (1980), 407–413. Zbl 0442.35064, MR 0570689
Reference: [289] B.  Stroffolini: Global boundedness of solutions of anisotropic variational problems.Boll. Unione Mat. Ital., VII.  Ser.,  A 5 (1991), 345–352. Zbl 0754.49026, MR 1138548
Reference: [290] V.  Šverák, X.  Yan: A singular minimizer of a smooth strongly convex functional in three dimensions.Calc. Var. Partial Differ. Equ. 10 (2000), 213–221. MR 1756327
Reference: [291] V.  Šverák, X.  Yan: Non-Lipschitz minimizers of smooth uniformly convex variational integrals.Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. MR 1946762
Reference: [292] L.  Székelyhidi, Jr.: The regularity of critical points of polyconvex functionals.Arch. Ration. Mech. Anal. 172 (2004), 133–152. Zbl 1049.49017, MR 2048569
Reference: [293] L.  Székelyhidi, Jr.: Rank-one convex hulls in $\mathbb{R}^{2\times 2}$.Calc. Var. Partial Differ. Equ. 22 (2005), 253–281. MR 2118899
Reference: [294] G.  Talenti: Boundedness of minimizers.Hokkaido Math.  J. 19 (1990), 259–279. Zbl 0723.58015, MR 1059170
Reference: [295] Qi  Tang: Regularity of minimizers of nonisotropic integrals of the calculus of variations.Ann. Mat. Pura Appl., IV.  Ser. 164 (1993), 77–87. MR 1243949
Reference: [296] N. S.  Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations.Commun. Pure Appl. Math. 20 (1967), 721–747. Zbl 0153.42703, MR 0226198
Reference: [297] N. S.  Trudinger: Pointwise estimates and quasilinear parabolic equations.Commun. Pure Appl. Math. 21 (1968), 205–226. Zbl 0159.39303, MR 0226168
Reference: [298] N. S.  Trudinger: On the regularity of generalized solutions of linear, non-uniformly elliptic equations.Arch. Ration. Mech. Anal. 42 (1971), 50–62. Zbl 0218.35035, MR 0344656
Reference: [299] N. S.  Trudinger: Linear elliptic operators with measurable coefficients.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III.  Ser. 27 (1973), 265–308. Zbl 0279.35025, MR 0369884
Reference: [300] N. S.  Trudinger, X.-J.  Wang: On the weak continuity of elliptic operators and applications to potential theory.Amer. J.  Math. 124 (2002), 369–410. MR 1890997
Reference: [301] K.  Uhlenbeck: Regularity for a class of non-linear elliptic systems.Acta Math. 138 (1977), 219–240. MR 0474389
Reference: [302] N. N.  Ural’tseva: Degenerate quasilinear elliptic systems.Semin. in Mathematics, V. A.  Steklov Math. Inst., Leningrad 7 (1968), 83–99. MR 0244628
Reference: [303] N. N.  Ural’tseva, A. B.  Urdaletova: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations.Vestn. Leningr. Univ., Math. 16 (1984), 263–270.
Reference: [304] K.-O.  Widman: Hölder continuity of solutions of elliptic systems.Manuscr. Math. 5 (1971), 299–308. Zbl 0223.35044, MR 0296484
Reference: [305] J.  Wolf: Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition.Z.  Anal. Anwend. 20 (2001), 315–330. Zbl 1163.35329, MR 1846604
Reference: [306] K.-W.  Zhang: On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form.In: Partial Differential Equations, Proc. Symp. Tianjin/China, 1986. Lect. Notes Math.  1306, Springer-Verlag, Berlin, 1988, pp. 262–277. Zbl 0672.35026, MR 1032785
Reference: [307] V. V.  Zhikov: Averaging of functionals of the calculus of variations and elasticity theory.Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710. Zbl 0599.49031, MR 0864171
Reference: [308] V. V.  Zhikov: On Lavrentiev’s phenomenon.Russ. J.  Math. Phys. 3 (1995), 249–269. Zbl 0910.49020, MR 1350506
Reference: [309] V. V.  Zhikov: On some variational problems.Russ. J.  Math. Phys. 5 (1997), 105–116. Zbl 0917.49006, MR 1486765
Reference: [310] V. V.  Zhikov: Meyer-type estimates for solving the nonlinear Stokes system.Differ. Equations 33 (1997), 108–115. MR 1607245
Reference: [311] V. V.  Zhikov, S. M.  Kozlov, and O. A.  Oleinik: Homogenization of differential operators and integral functionals.Springer-Verlag, Berlin, 1994. MR 1329546
.

Files

Files Size Format View
AplMat_51-2006-4_4.pdf 707.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo