Title:
|
Regularity of minima: an invitation to the Dark Side of the Calculus of Variations (English) |
Author:
|
Mingione, Giuseppe |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2006 |
Pages:
|
355-426 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side... (English) |
Keyword:
|
regularity |
Keyword:
|
minimizers |
Keyword:
|
Dark Side |
MSC:
|
35J20 |
MSC:
|
35J70 |
MSC:
|
49N60 |
idZBL:
|
Zbl 1164.49324 |
idMR:
|
MR2291779 |
DOI:
|
10.1007/s10778-006-0110-3 |
. |
Date available:
|
2009-09-22T18:26:31Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134645 |
. |
Reference:
|
[1] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations.Arch. Ration. Mech. Anal. 86 (1984), 125–145. MR 0751305 |
Reference:
|
[2] E. Acerbi, N. Fusco: A regularity theorem for minimizers of quasiconvex integrals.Arch. Ration. Mech. Anal. 99 (1987), 261–281. MR 0888453 |
Reference:
|
[3] E. Acerbi, N. Fusco: Local regularity for minimizers of nonconvex integrals.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 16 (1989), 603–636. MR 1052736 |
Reference:
|
[4] E. Acerbi, N. Fusco: Partial regularity under anisotropic $(p,q)$ growth conditions.J. Differ. Equations 107 (1994), 46–67. MR 1260848 |
Reference:
|
[5] E. Acerbi, G. Mingione: Regularity results for a class of functionals with non-standard growth.Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973 |
Reference:
|
[6] E. Acerbi, G. Mingione: Regularity results for a class of quasiconvex functionals with nonstandard growth.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001), 311–339. MR 1895714 |
Reference:
|
[7] E. Acerbi, G. Mingione: Regularity results for stationary electro-rheological fluids.Arch. Ration. Mech. Anal. 164 (2002), 213–259. MR 1930392 |
Reference:
|
[8] E. Acerbi, G. Mingione: Gradient estimates for the $p(x)$-Laplacean system.J. Reine Angew. Math. 584 (2005), 117–148. MR 2155087 |
Reference:
|
[9] E. Acerbi, G. Mingione: Gradient estimates for a class of parabolic systems.Duke Math. J, to appear. MR 2286632 |
Reference:
|
[10] E. Acerbi, G. Mingione, and G. A. Seregin: Regularity results for parabolic systems related to a class of non Newtonian fluids.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 25–60. MR 2037246 |
Reference:
|
[11] Yu. A. Alkhutov: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition.Differ. Equations 33 (1997), 1653–1663. Zbl 0949.35048, MR 1669915 |
Reference:
|
[12] F. J. Almgren: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure.Ann. Math. 87 (1968), 321–391. Zbl 0162.24703, MR 0225243 |
Reference:
|
[13] F. J. Almgren: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Mem. Am. Math. Soc. 165.Am. Math. Soc. (AMS), Providence, 1976. MR 0420406 |
Reference:
|
[14] L. Ambrosio: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Lecture Notes.Scuola Normale Superiore, Pisa, 1995. (Italian) MR 1736268 |
Reference:
|
[15] S. N. Antontsev, S. I. Shmarev: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal., Theory Methods Appl. 60 (2005), 515–545. MR 2103951 |
Reference:
|
[16] S. N. Antontsev, S. I. Shmarev: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Pré-publicasao n. 4, DMUBI.. |
Reference:
|
[17] S. N. Antontsev, V. V. Zhikov: Higher integrability for parabolic equations of $p(x;t)$-Laplacian type.Adv. Differential Equations 10 (2005), 1053–1080. MR 2161759 |
Reference:
|
[18] G. Anzellotti: On the $C^{1,\alpha }$-regularity of $\omega $-minima of quadratic functionals.Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983), 195–212. MR 0718371 |
Reference:
|
[19] A. A. Arkhipova: Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $q$ greater than two.J. Math. Sci. 115 (2003), 2735–2746. MR 1810609 |
Reference:
|
[20] G. Aronsson, M. G. Crandall, and P. Juutinen: A tour of the theory of absolutely minimizing functions.Bull. Am. Math. Soc., New Ser. 41 (2004), 439–505. MR 2083637 |
Reference:
|
[21] K. Astala: Area distortion of quasiconformal mappings.Acta Math. 173 (1994), 37–60. Zbl 0815.30015, MR 1294669 |
Reference:
|
[22] H. Attouch, C. Sbordone: Asymptotic limits for perturbed functionals of calculus of variations.Ric. Mat. 29 (1980), 85–124. MR 0605596 |
Reference:
|
[23] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity.Arch. Ration. Mech. Anal. 63 (1977), 337–403. Zbl 0368.73040, MR 0475169 |
Reference:
|
[24] J. M. Ball: Some open problems in elasticity.In: Geometry, Mechanics, and Dynamics, P. Newton (ed.), Springer-Verlag, New York, 2002, pp. 3–59. Zbl 1054.74008, MR 1919825 |
Reference:
|
[25] J. M. Ball, V. J. Mizel: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation.Arch. Ration. Mech. Anal. 90 (1985), 325–388. MR 0801585 |
Reference:
|
[26] J. M. Ball, F. Murat: $W^{1,p}$-quasiconvexity and variational problems for multiple integrals.J. Funct. Anal. 58 (1984), 225–253. MR 0759098 |
Reference:
|
[27] J. M. Ball, J. C. Currie, and P. J. Olver: Null Lagrangians, weak continuity, and variational problems of arbitrary order.J. Funct. Anal. 41 (1981), 135–174. MR 0615159 |
Reference:
|
[28] L. Beck: Partielle Regularität für Schwache Lösungen nichtlinearer elliptischer Systeme: der Subquadratische Fall.Diploma Thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2005. (German) |
Reference:
|
[29] L. Beck: Boundary regularity results for systems with sub-linear growth.(to appear). |
Reference:
|
[30] I. Benedetti, E. Mascolo: Regularity of minimizers for nonconvex vectorial integrals with $p$-$q$ growth via relaxation methods.Abstr. Appl. Anal. (2004), 27–44. MR 2058791 |
Reference:
|
[31] A. Bensoussan, J. Frehse: Regularity Results for Nonlinear Elliptic Systems and Applications. Applied Mathematical Sciences 151.Springer-Verlag, Berlin, 2002. MR 1917320 |
Reference:
|
[32] J. J. Bevan: Polyconvexity and counterexamples to regularity in the multidimensional calculus of variations.PhD. Thesis, , Oxford, 2003. |
Reference:
|
[33] J. Bevan: Singular minimizers of strictly polyconvex functionals in $\mathbb{R}^{2\times 2}$.Calc. Var. Partial Differ. Equ. 23 (2005), 347–372. MR 2142068 |
Reference:
|
[34] T. Bhattacharya, F. Leonetti: A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth.Nonlinear Anal., Theory Methods Appl. 17 (1991), 833–839. MR 1131493 |
Reference:
|
[35] T. Bhattacharya, F. Leonetti: $W^{2,2}$ regularity for weak solutions of elliptic systems with nonstandard growth.J. Math. Anal. Appl. 176 (1993), 224–234. MR 1222166 |
Reference:
|
[36] M. Bildhauer: Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics Vol. 1818.Springer-Verlag, Berlin, 2003. MR 1998189 |
Reference:
|
[37] M. Bildhauer: A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth.J. Convex Anal. 9 (2002), 117–137. Zbl 1011.49022, MR 1917392 |
Reference:
|
[38] M. Bildhauer, M. Fuchs: Partial regularity for variational integrals with $(s,\mu ,q)$-growth.Calc. Var. Partial Differ. Equ. 13 (2001), 537–560. MR 1867941 |
Reference:
|
[39] M. Bildhauer, M. Fuchs: Partial regularity for a class of anisotropic variational integrals with convex hull property.Asymptotic Anal. 32 (2002), 293–315. MR 1993652 |
Reference:
|
[40] M. Bildhauer, M. Fuchs: $C^{1,\alpha }$-solutions to non-autonomous anisotropic variational problems.Calc. Var. Partial Differ. Equ. 24 (2005), 309–340. MR 2174429 |
Reference:
|
[41] M. Bildhauer, M. Fuchs, and X. Zhong: A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids.Manuscr. Math. 116 (2005), 135–156. MR 2122416 |
Reference:
|
[42] S. S. Byun: Parabolic equations with BMO coefficients in Lipschitz domains.J. Differ. Equations 209 (2005), 229–265. Zbl 1061.35021, MR 2110205 |
Reference:
|
[43] L. Boccardo, P. Marcellini, and C. Sbordone: $L^\infty $-regularity for variational problems with sharp non-standard growth conditions.Boll. Unione Mat. Ital. VII. Ser. A 4 (1990), 219–225. MR 1066774 |
Reference:
|
[44] B. Bojarski, T. Iwaniec: Analytical foundations of the theory of quasiconformal mappings in $\mathbb{R}^{n}$.Ann. Acad. Sci. Fenn., Ser. A I 8 (1983), 257–324. MR 0731786 |
Reference:
|
[45] B. Bojarski, C. Sbordone, and I. Wik: The Muckenhoupt class $A_1(R)$.Stud. Math. 101 (1992), 155–163. MR 1149569 |
Reference:
|
[46] E. Bombieri: Regularity theory for almost minimal currents.Arch. Ration. Mech. Anal. 78 (1982), 99–130. Zbl 0485.49024, MR 0648941 |
Reference:
|
[47] M. Bonk, J. Heinonen: Smooth quasiregular mappings with branching.Publ. Math., Inst. Hautes Étud. Sci. 100 (2004), 153–170. MR 2102699 |
Reference:
|
[48] G. Buttazzo, M. Belloni: A survey of old and recent results about the gap phenomenon in the Calculus of Variations.In: Recent Developments in Well-posed Variational Problems 331, R. Lucchetti et al. (eds.), Kluwer Academic Publishers, Dordrecht, 1995, pp. 1–27. MR 1351738 |
Reference:
|
[49] G. Buttazzo, V. J. Mizel: Interpretation of the Lavrentiev Phenomenon by relaxation.J. Funct. Anal. 110 (1992), 434–460. MR 1194993 |
Reference:
|
[50] R. Caccioppoli: Limitazioni integrali per le soluzioni di un’equazione lineare ellitica a derivate parziali.Giorn. Mat. Battaglini, IV. Ser. 80 (1951), 186–212. (Italian) MR 0046536 |
Reference:
|
[51] L. A. Caffarelli, I. Peral: On $W^{1,p}$ estimates for elliptic equations in divergence form.Commun. Pure Appl. Math. 51 (1998), 1–21. MR 1486629 |
Reference:
|
[52] S. Campanato: Hölder continuity of the solutions of some non-linear elliptic systems.Adv. Math. 48 (1983), 15–43. MR 0697613 |
Reference:
|
[53] S. Campanato: Elliptic systems with non-linearity $q$ greater than or equal to two. Regularity of the solution of the Dirichlet problem.Ann. Mat. Pura Appl., IV. Ser. 147 (1987), 117–150. MR 0916705 |
Reference:
|
[54] S. Campanato: Hölder continuity and partial Hölder continuity results for $H^{1,q}$-solutions of nonlinear elliptic systems with controlled growth.Rend. Sem. Mat. Fis. Milano 52 (1982), 435–472. Zbl 0576.35041, MR 0802957 |
Reference:
|
[55] S. Campanato: Some new results on differential systems with monotonicity property.Boll. Unione Mat. Ital., VII. Ser. 2 (1988), 27–57. Zbl 0662.35039 |
Reference:
|
[56] M. Carozza, N. Fusco, and G. Mingione: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth.Ann. Mat. Pura Appl., IV. Ser. 175 (1998), 141–164. MR 1748219 |
Reference:
|
[57] P. Celada, G. Cupini, and M. Guidorzi: Existence and regularity of minimizers of nonconvex integrals with $p$-$q$ growth.ESAIM Control Optim. Calc. Var, to appear. MR 2306640 |
Reference:
|
[58] Y. Chen, S. Levine, and R. Rao: Functionals with $p(x)$-growth in image processing.Preprint, 2004. |
Reference:
|
[59] V. Chiadó Piat, A. Coscia: Hölder continuity of minimizers of functionals with variable growth exponent.Manuscr. Math. 93 (1997), 283–299. MR 1457729 |
Reference:
|
[60] F. Chiarenza, M. Frasca, and P. Longo: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients.Trans. Am. Math. Soc. 336 (1993), 841–853. MR 1088476 |
Reference:
|
[61] M. Chipot, L. C. Evans: Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations.Proc. R. Soc. Edinb., Sect. A 102 (1986), 291–303. MR 0852362 |
Reference:
|
[62] A. Cianchi: Boundedness of solutions to variational problems under general growth conditions.Commun. Partial Differ. Equations 22 (1997), 1629–1646. Zbl 0892.35048, MR 1469584 |
Reference:
|
[63] A. Cianchi: Local boundedness of minimizers of anisotropic functionals.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 17 (2000), 147–168. Zbl 0984.49019, MR 1753091 |
Reference:
|
[64] A. Cianchi, N. Fusco: Gradient regularity for minimizers under general growth conditions.J. Reine Angew. Math. 507 (1999), 15–36. MR 1670258 |
Reference:
|
[65] F. Colombini: Un teorema di regolarità alla frontiera per soluzioni di sistemi ellittici quasi lineari.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 25 (1971), 115–161. (Italian) Zbl 0211.13502, MR 0289939 |
Reference:
|
[66] A. Coscia, G. Mingione: Hölder continuity of the gradient of $p(x)$-harmonic mappings.C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363–368. MR 1675954 |
Reference:
|
[67] D. Cruz-Uribe, C. J. Neugebauer: The structure of the reverse Hölder classes.Trans. Am. Math. Soc. 347 (1995), 2941–2960. MR 1308005 |
Reference:
|
[68] G. Cupini, N. Fusco, and R. Petti: Hölder continuity of local minimizers.J. Math. Anal. Appl. 235 (1999), 578–597. MR 1703712 |
Reference:
|
[69] G. Cupini, M. Guidorzi, and E. Mascolo: Regularity of minimizers of vectorial integrals with $p$-$q$ growth.Nonlinear Anal., Theory Methods Appl. 54 (2003), 591–616. MR 1983438 |
Reference:
|
[70] G. Cupini, A. P. Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem.J. Convex Anal. 10 (2003), 389–408. MR 2043864 |
Reference:
|
[71] B. Dacorogna: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations.J. Funct. Anal. 46 (1982), 102–118. Zbl 0547.49003, MR 0654467 |
Reference:
|
[72] B. Dacorogna: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences 78.Springer-Verlag, Berlin, 1989. MR 0990890 |
Reference:
|
[73] B. Dacorogna, P. Marcellini: Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications 37.Birkhäuser-Verlag, Boston, 1999. MR 1702252 |
Reference:
|
[74] A. Dall’Aglio, E. Mascolo, and G. Papi: Local boundedness for minima of functionals with nonstandard growth conditions.Rend. Mat. Appl., VII Ser. 18 (1998), 305–326. MR 1659830 |
Reference:
|
[75] L. D’Apuzzo, C. Sbordone: Reverse Hölder inequalities. A sharp result.Rend. Mat. Appl., VII Ser. 10 (1990), 357–366. MR 1076164 |
Reference:
|
[76] J. Daněček, O. John, and J. Stará: Interior $C^{1,\gamma }$-regularity for weak solutions of nonlinear second order elliptic systems.Math. Nachr. 276 (2004), 47–56. MR 2100046 |
Reference:
|
[77] E. De Giorgi: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari.Mem. Accad. Sci. Torino, P. I., III. Ser. 3 (1957), 25–43. (Italian) Zbl 0084.31901, MR 0093649 |
Reference:
|
[78] E. De Giorgi: Frontiere orientate di misura minima.Seminario di Matematica della Scuola Normale Superiore, Pisa, 1960–61. (Italian) |
Reference:
|
[79] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 135–137. (Italian) MR 0227827 |
Reference:
|
[80] E. DiBenedetto: Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations.Arch. Ration. Mech. Anal. 100 (1988), 129–147. Zbl 0708.35017, MR 0913961 |
Reference:
|
[81] E. DiBenedetto: Degenerate Parabolic Equations. Universitext.Springer-Verlag, New York, 1993. MR 1230384 |
Reference:
|
[82] E. DiBenedetto, A. Friedman: Hölder estimates for nonlinear degenerate parabolic systems.J. Reine Angew. Math. 357 (1985), 1–22. MR 0783531 |
Reference:
|
[83] E. DiBenedetto, J. J. Manfredi: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems.Am. J. Math. 115 (1993), 1107–1134. MR 1246185 |
Reference:
|
[84] E. DiBenedetto, N. Trudinger: Harnack inequalities for quasiminima of variational integrals.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 1 (1984), 295–308. MR 0778976 |
Reference:
|
[85] L. Diening: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657–700. MR 2166733 |
Reference:
|
[86] L. Diening, P. Hästö, and A. Nekvinda: Open problems in variable exponent Lebesgue and Sobolev spaces.In: FSDONA Proceedings, Milovy, Czech Republic, 2004, P. Drábek, J. Rákosník (eds.), 2004, pp. 38–58. |
Reference:
|
[87] L. Diening, M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197–220. MR 2009242 |
Reference:
|
[88] G. Di Fazio: $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients.Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 409–420. MR 1405255 |
Reference:
|
[89] A. Dolcini, L. Esposito, and N. Fusco: $C^{0,\alpha }$ regularity of $\omega $-minima.Boll. Unione Mat. Ital., VII. Ser., A 10 (1996), 113–125. MR 1386250 |
Reference:
|
[90] G. Dolzmann, J. Kristensen: Higher integrability of minimizing Young measures.Calc. Var. Partial Differ. Equ. 22 (2005), 283–301. MR 2118900 |
Reference:
|
[91] F. Duzaar, A. Gastel: Nonlinear elliptic systems with Dini continuous coefficients.Arch. Math. 78 (2002), 58–73. MR 1887317 |
Reference:
|
[92] F. Duzaar, A. Gastel, and J. F. Grotowski: Partial regularity for almost minimizers of quasi-convex integrals.SIAM J. Math. Anal. 32 (2000), 665–687. MR 1786163 |
Reference:
|
[93] F. Duzaar, A. Gastel, and G. Mingione: Elliptic systems, singular sets and Dini continuity.Commun. Partial Differ. Equations 29 (2004), 1215–1240. MR 2097582 |
Reference:
|
[94] F. Duzaar, J. F. Grotowski: Optimal interior partial regularity for nonlinear elliptic systems: The method of $A$-harmonic approximation.Manuscr. Math. 103 (2000), 267–298. MR 1802484 |
Reference:
|
[95] F. Duzaar, J. F. Grotowski, and M. Kronz: Partial and full boundary regularity for minimizers of functionals with nonquadratic growth.J. Convex Anal. 11 (2004), 437–476. MR 2158914 |
Reference:
|
[96] F. Duzaar, J. F. Grotowski, and M. Kronz: Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth.Ann. Mat. Pura Appl., IV. Ser. 184 (2005), 421–448. MR 2177809 |
Reference:
|
[97] F. Duzaar, J. F. Grotowski, and K. Steffen: Optimal regularity results via $A$-harmonic approximation.In: Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 265–296. MR 2008343 |
Reference:
|
[98] F. Duzaar, J. Kristensen, and G. Mingione: The existence of regular boundary points for non-linear elliptic systems.J. Reine Angew. Math (to appear). MR 2300451 |
Reference:
|
[99] F. Duzaar, M. Kronz: Regularity of $\omega $-minimizers of quasi-convex variational integrals with polynomial growth.Differ. Geom. Appl. 17 (2002), 139–152. MR 1925762 |
Reference:
|
[100] F. Duzaar, G. Mingione: The $p$-harmonic approximation and the regularity of $p$-harmonic maps.Calc. Var. Partial Differ. Equ. 20 (2004), 235–256. MR 2062943 |
Reference:
|
[101] F. Duzaar, G. Mingione: Regularity for degenerate elliptic problems via $p$-harmonic approximation.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 21 (2004), 735–766. MR 2086757 |
Reference:
|
[102] F. Duzaar, G. Mingione: Second order parabolic systems, optimal regularity, and singular sets of solutions.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 22 (2005), 705–751. MR 2172857 |
Reference:
|
[103] F. Duzaar, G. Mingione: Non-autonomous functionals with $(p,q)$-growth: regularity in borderline cases.In prepration. |
Reference:
|
[104] F. Duzaar, K. Steffen: Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals.J. Reine Angew. Math. 546 (2002), 73–138. MR 1900994 |
Reference:
|
[105] I. Ekeland: On the variational principle.J. Math. Anal. Appl. 47 (1974), 324–353. Zbl 0286.49015, MR 0346619 |
Reference:
|
[106] A. Elcrat, N. G. Meyers: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions.Duke Math. J. 42 (1975), 121–136. MR 0417568 |
Reference:
|
[107] M. Eleuteri: Hölder continuity results for a class of functionals with non-standard growth.Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 7 (2004), 129–157. Zbl 1178.49045, MR 2044264 |
Reference:
|
[108] L. Esposito, F. Leonetti, and G. Mingione: Regularity for minimizers of functionals with $p$-$q$ growth.Nonlinear Differ. Equ. Appl. 6 (1999), 133–148. MR 1694803 |
Reference:
|
[109] L. Esposito, F. Leonetti, and G. Mingione: Higher integrability for minimizers of integral functionals with $(p,q)$ growth.J. Differ. Equations 157 (1999), 414–438. MR 1713266 |
Reference:
|
[110] L. Esposito, F. Leonetti, and G. Mingione: Regularity results for minimizers of irregular integrals with $(p,q)$ growth.Forum Math. 14 (2002), 245–272. MR 1880913 |
Reference:
|
[111] L. Esposito, F. Leonetti, and G. Mingione: Sharp regularity for functionals with $(p,q)$ growth.J. Differ. Equations 204 (2004), 5–55. MR 2076158 |
Reference:
|
[112] L. Esposito, G. Mingione: A regularity theorem for $\omega $-minimizers of integral functionals.Rend. Mat. Appl., VII. Ser. 19 (1999), 17–44. MR 1710133 |
Reference:
|
[113] L. Esposito, G. Mingione: Partial regularity for minimizers of convex integrals with $L\log L$-growth.Nonlinear Differ. Equ. Appl. 7 (2000), 107–125. MR 1746116 |
Reference:
|
[114] L. Esposito, G. Mingione: Partial regularity for minimizers of degenerate polyconvex energies.J. Convex Anal. 8 (2001), 1–38. MR 1829054 |
Reference:
|
[115] L. C. Evans: Quasiconvexity and partial regularity in the calculus of variations.Arch. Ration. Mech. Anal. 95 (1986), 227–252. Zbl 0627.49006, MR 0853966 |
Reference:
|
[116] L. C. Evans, R. F. Gariepy: On the partial regularity of energy-minimizing, area-preserving maps.Calc. Var. Partial Differ. Equ. 9 (1999), 357–372. MR 1731471 |
Reference:
|
[117] E. B. Fabes, D. W. Stroock: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash.Arch. Ration. Mech. Anal. 96 (1986), 327–338. MR 0855753 |
Reference:
|
[118] X. Fan, D. Zhao: A class of De Giorgi type and Hölder continuity.Nonlinear Anal., Theory Methods Appl. 36 (1999), 295–318. MR 1688232 |
Reference:
|
[119] X. Fan, D. Zhao: The quasi-minimizer of integral functionals with $m(x)$ growth conditions.Nonlinear Anal., Theory Methods Appl. 39 (2000), 807–816. MR 1736389 |
Reference:
|
[120] D. Faraco, P. Koskela, and X. Zhong: Mappings of finite distortion: the degree of regularity.Adv. Math. 190 (2005), 300–318. MR 2102659 |
Reference:
|
[121] V. Ferone, N. Fusco: Continuity properties of minimizers of integral functionals in a limit case.J. Math. Anal. Appl. 202 (1996), 27–52. MR 1402586 |
Reference:
|
[122] I. Fonseca, N. Fusco: Regularity results for anisotropic image segmentation models.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997), 463–499. MR 1612389 |
Reference:
|
[123] I. Fonseca, N. Fusco, P. Marcellini: An existence result for a nonconvex variational problem via regularity.ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. MR 1925022 |
Reference:
|
[124] I. Fonseca, G. Leoni, and J. Malý: Weak continuity and lower semicontinuity results for determinants.Arch. Ration. Mech. Anal. 178 (2005), 411–448. MR 2196498 |
Reference:
|
[125] I. Fonseca, J. Malý: Relaxation of multiple integrals below the growth exponent.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 14 (1997), 309–338. MR 1450951 |
Reference:
|
[126] I. Fonseca, J. Malý, and G. Mingione: Scalar minimizers with fractal singular sets.Arch. Ration. Mech. Anal. 172 (2004), 295–307. MR 2058167 |
Reference:
|
[127] M. Foss: Examples of the Lavrentiev Phenomenon with continuous Sobolev exponent dependence.J. Convex Anal. 10 (2003), 445–464. Zbl 1084.49002, MR 2043868 |
Reference:
|
[128] M. Foss: A condition sufficient for the partial regularity of minimizers in two-dimensional nonlinear elasticity.In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370, P. Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005. MR 2126701 |
Reference:
|
[129] M. Foss: Global regularity for almost minimizers of nonconvex variational problems.Preprint, 2006. MR 2372803 |
Reference:
|
[130] M. Foss, W. J. Hrusa, and V. J. Mizel: The Lavrentiev gap phenomenon in nonlinear elasticity.Arch. Ration. Mech. Anal. 167 (2003), 337–365. MR 1981861 |
Reference:
|
[131] M. Foss, W. J. Hrusa, and V. J. Mizel: The Lavrentiev phenomenon in nonlinear elasticity.J. Elasticity 72 (2003), 173–181. MR 2064223 |
Reference:
|
[132] J. Frehse: A note on the Hölder continuity of solutions of variational problems.Abh. Math. Semin. Univ. Hamb. 43 (1975), 59–63. Zbl 0316.49008, MR 0377648 |
Reference:
|
[133] J. Frehse, G. A. Seregin: Regularity of Solutions to Variational Problems of the Deformation Theory of Plasticity with Logarithmic Hardening. Amer. Math. Soc. Transl. Ser. 2, 193.Amer. Math. Soc., Providence, 1999. MR 1736908 |
Reference:
|
[134] M. Fuchs: Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions.Analysis 7 (1987), 83–93. Zbl 0624.35032, MR 0885719 |
Reference:
|
[135] M. Fuchs, G. Li: Global gradient bounds for relaxed variational problems.Manuscr. Math. 92 (1997), 287–302. Zbl 0892.49027, MR 1437505 |
Reference:
|
[136] M. Fuchs, G. Mingione: Full $C^{1,\alpha }$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth.Manuscr. Math. 102 (2000), 227–250. MR 1771942 |
Reference:
|
[137] M. Fuchs, G. A. Seregin: Some remarks on non-Newtonian fluids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids.Math. Models Methods Appl. Sci. 7 (1997), 405–433. MR 1443793 |
Reference:
|
[138] M. Fuchs, G. A. Seregin: A regularity theory for variational integrals with $L\ln L$-growth.Calc. Var. Partial Differ. Equ. 6 (1998), 171–187. MR 1606481 |
Reference:
|
[139] M. Fuchs, G. A. Seregin: Hölder continuity for weak extremals of some two-dimensional variational problems related to nonlinear elasticity.Adv. Math. Sci. Appl. 7 (1997), 413–425. MR 1454674 |
Reference:
|
[140] M. Fuchs, G. A. Seregin: Partial regularity of the deformation gradient for some model problems in nonlinear two-dimensional elasticity.St. Petersbg. Math. J. 6 (1995), 1229–1248. MR 1322123 |
Reference:
|
[141] N. Fusco: Quasiconvexity and semicontinuity for higher-order multiple integrals.Ric. Mat. 29 (1980), 307–323. MR 0632213 |
Reference:
|
[142] N. Fusco, J. E. Hutchinson: $C^{1,\alpha }$-partial regularity of functions minimising quasiconvex integrals.Manuscr. Math. 54 (1986), 121–143. MR 0808684 |
Reference:
|
[143] N. Fusco, J. E. Hutchinson: Partial regularity for minimisers of certain functionals having nonquadratic growth.Ann. Mat. Pura Appl., IV. Ser. 155 (1989), 1–24. MR 1042826 |
Reference:
|
[144] N. Fusco, J. E. Hutchinson: Partial regularity in problems motivated by nonlinear elasticity.SIAM J. Math. Anal. 22 (1991), 1516–1551. MR 1129398 |
Reference:
|
[145] N. Fusco, J. E. Hutchinson: Partial regularity and everywhere continuity for a model problem from non-linear elasticity.J. Aust. Math. Soc., Ser. A 57 (1994), 158–169. MR 1288671 |
Reference:
|
[146] N. Fusco, C. Sbordone: Higher integrability from reverse Jensen inequalities with different supports.In: Partial Differential Equations and the Calculus of Variations. Essays in Honor of Ennio De Giorgi, Birkhäuser-Verlag, Boston, 1989, pp. 541–562. MR 1034020 |
Reference:
|
[147] N. Fusco, C. Sbordone: Local boundedness of minimizers in a limit case.Manuscr. Math. 69 (1990), 19–25. MR 1070292 |
Reference:
|
[148] N. Fusco, C. Sbordone: Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions.Commun. Pure Appl. Math. 43 (1990), 673–683. MR 1057235 |
Reference:
|
[149] N. Fusco, C. Sbordone: Some remarks on the regularity of minima of anisotropic integrals.Commun. Partial Differ. Equations 18 (1993), 153–167. MR 1211728 |
Reference:
|
[150] F. W. Gehring: The $L^p$-integrability of the partial derivatives of a quasiconformal mapping.Acta Math. 130 (1973), 265–277. MR 0402038 |
Reference:
|
[151] M. Giaquinta: A counter-example to the boundary regularity of solutions to quasilinear systems.Manuscr. Math. 24 (1978), 217–220. MR 0492658 |
Reference:
|
[152] M. Giaquinta: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105.Princeton University Press, Princeton, 1983. MR 0717034 |
Reference:
|
[153] M. Giaquinta: Direct methods for regularity in the calculus of variations.In: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol. VI (Paris, 1982/1983). Res. Notes in Math. 109, Pitman, Boston, 1984, pp. 258–274. Zbl 0553.49011, MR 0772245 |
Reference:
|
[154] M. Giaquinta: The problem of the regularity of minimizers.In: Proceedings of the International Congress of Mathematicians, Vol. 2 (Berkeley, California, 1986), Amer. Math. Soc., Providence, 1987, pp. 1072–1083. Zbl 0667.49029, MR 0934310 |
Reference:
|
[155] M. Giaquinta: Growth conditions and regularity. A counterexample.Manuscr. Math. 59 (1987), 245–248. Zbl 0638.49005, MR 0905200 |
Reference:
|
[156] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics.Birkhäuser-Verlag, Basel, 1993. MR 1239172 |
Reference:
|
[157] M. Giaquinta, E. Giusti: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31–46. MR 0666107 |
Reference:
|
[158] M. Giaquinta, E. Giusti: Differentiability of minima of nondifferentiable functionals.Invent. Math. 72 (1983), 285–298. MR 0700772 |
Reference:
|
[159] M. Giaquinta, E. Giusti: Global $C^{1,\alpha }$-regularity for second order quasilinear elliptic equations in divergence form.J. Reine Angew. Math. 351 (1984), 55–65. MR 0749677 |
Reference:
|
[160] M. Giaquinta, G. Modica: Almost-everywhere regularity for solutions of nonlinear elliptic systems.Manuscr. Math. 28 (1979), 109–158. MR 0535699 |
Reference:
|
[161] M. Giaquinta, G. Modica: Regularity results for some classes of higher order nonlinear elliptic systems.J. Reine Angew. Math. 311/312 (1979), 145–169. MR 0549962 |
Reference:
|
[162] M. Giaquinta, G. Modica: Remarks on the regularity of the minimizers of certain degenerate functionals.Manuscr. Math. 57 (1986), 55–99. MR 0866406 |
Reference:
|
[163] M. Giaquinta, M. Struwe: On the partial regularity of weak solutions on nonlinear parabolic systems.Math. Z. 179 (1982), 437–451. MR 0652852 |
Reference:
|
[164] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0473443 |
Reference:
|
[165] E. Giusti: Direct methods in the calculus of variations.World Scientific, Singapore, 2003. Zbl 1028.49001, MR 1962933 |
Reference:
|
[166] E. Giusti, M. Miranda: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni.Boll. Unione Mat. Ital., IV. Ser. 1 (1968), 219–226. (Italian) MR 0232265 |
Reference:
|
[167] E. Giusti, M. Miranda: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari.Arch. Ration. Mech. Anal. 31 (1968), 173–184. (Italian) MR 0235264 |
Reference:
|
[168] M. Gromov: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete.Springer-Verlag, Berlin, 1986. MR 0864505 |
Reference:
|
[169] J. F. Grotowski: Boundary regularity for nonlinear elliptic systems.Calc. Var. Partial Differ. Equ. 15 (2002), 353–388. Zbl 1148.35315, MR 1938819 |
Reference:
|
[170] J. F. Grotowski: Boundary regularity for quasilinear elliptic systems.Commun. Partial Differ. Equations 27 (2002), 2491-2512. Zbl 1129.35352, MR 1944037 |
Reference:
|
[171] C. Hamburger: Regularity of differential forms minimizing degenerate elliptic functionals.J. Reine Angew. Math. 431 (1992), 7–64. Zbl 0776.35006, MR 1179331 |
Reference:
|
[172] C. Hamburger: Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations.Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 321–354. Zbl 0852.35031, MR 1378480 |
Reference:
|
[173] C. Hamburger: Partial regularity for minimizers of variational integrals with discontinuous integrands.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 13 (1996), 255–282. Zbl 0863.35022, MR 1395672 |
Reference:
|
[174] C. Hamburger: Partial boundary regularity of solutions of nonlinear superelliptic systems.(to appear). MR 2310958 |
Reference:
|
[175] C. Hamburger: Optimal regularity of minimzers of quasiconvex variational integrals.ESAIM Control Optim. Calc. Var (to appear). MR 2351395 |
Reference:
|
[176] W. Hao, S. Leonardi, and J. Nečas: An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 57–67. MR 1401417 |
Reference:
|
[177] R. M. Hardt: Singularities of harmonic maps.Bull. Am. Math. Soc., New Ser. 34 (1997), 15–34. Zbl 0871.58026, MR 1397098 |
Reference:
|
[178] R. M. Hardt, F. G. Lin, and C. Y. Wang: The $p$-energy minimality of $x/|x|$.Commun. Anal. Geom. 6 (1998), 141–152. MR 1619840 |
Reference:
|
[179] P. Harjulehto, P. Hästö, and M. Koskenoja: The Dirichlet energy integral on intervals in variable exponent Sobolev spaces.Z. Anal. Anwend. 22 (2003), 911–923. MR 2036936 |
Reference:
|
[180] P. Hästö: Counter-examples of regularity in variable exponent Sobolev spaces.In: The $p$-harmonic Equation and Recent Advances in Analysis. Contemp. Math. 370, P. Poggi-Corradini (ed.), Amer. Math. Soc., Providence, 2005, pp. 133–143. Zbl 1084.46025, MR 2126704 |
Reference:
|
[181] J. Heinonen, T. Kilpeläinen, and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs.Clarendon Press, Oxford, 1993. MR 1207810 |
Reference:
|
[182] S. Hildebrandt, H. Kaul, and K.-O. Widman: An existence theorem for harmonic mappings of Riemanninan manifolds.Acta Math. 138 (1977), 1–16. MR 0433502 |
Reference:
|
[183] S. Hildebrandt, K.-O. Widman: Some regularity results for quasilinear elliptic systems of second order.Math. Z. 142 (1975), 67–86. MR 0377273 |
Reference:
|
[184] M.-C. Hong: Existence and partial regularity in the calculus of variations.Ann. Mat. Pura Appl., IV. Ser. 149 (1987), 311–328. Zbl 0648.49008, MR 0932791 |
Reference:
|
[185] M.-C. Hong: Some remarks on the minimizers of variational integrals with nonstandard growth conditions.Boll. Unione Mat. Ital., VII. Ser., A 6 (1992), 91–101. MR 1164739 |
Reference:
|
[186] M.-C. Hong: On the minimality of the $p$-harmonic map $\frac{x}{|x|}\: B^ n\rightarrow S^ {n-1}$.Calc. Var. Partial Differ. Equ. 13 (2001), 459–468. Zbl 1002.94020, MR 1867937 |
Reference:
|
[187] P.-A. Ivert: Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung.Manuscr. Math. 30 (1979), 53–88. (German) Zbl 0429.35033, MR 0552363 |
Reference:
|
[188] P.-A. Ivert: Partial regularity of vector valued functions minimizing variational integrals.Preprint Univ. Bonn, 1982. |
Reference:
|
[189] T. Iwaniec: Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators.Stud. Math. 75 (1983), 293–312. MR 0722254 |
Reference:
|
[190] T. Iwaniec: $p$-harmonic tensors and quasiregular mappings.Ann. Math. 136 (1992), 589–624. Zbl 0785.30009, MR 1189867 |
Reference:
|
[191] T. Iwaniec: The Gehring lemma.In: Quasiconformal Mappings and Analysis, Ann Arbor, 1995, P. Duren (ed.), Springer-Verlag, New York, 1998, pp. 181–204. Zbl 0888.30017, MR 1488451 |
Reference:
|
[192] T. Iwaniec, G. Martin: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs.Oxford University Press, Oxford, 2001. MR 1859913 |
Reference:
|
[193] T. Iwaniec, C. Sbordone: Quasiharmonic fields.Ann. Inst. Henri Poincaré, Anal. Non Linèaire 18 (2001), 519–572. MR 1849688 |
Reference:
|
[194] O. John, J. Malý, and J. Stará: Nowhere continuous solutions to elliptic systems.Commentat. Math. Univ. Carol. 30 (1989), 33–43. MR 0995699 |
Reference:
|
[195] J. Jost, M. Meier: Boundary regularity for minima of certain quadratic functionals.Math. Ann. 262 (1983), 549–561. MR 0696525 |
Reference:
|
[196] V. Kokilashvili, S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Rev. Mat. Iberoam. 20 (2004), 493–515. MR 2073129 |
Reference:
|
[197] J. Kinnunen: Sharp Results on Reverse Hölder Inequalities.Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes No 95, Suomalainen Tiedeakatemia, Helsinki, 1994. Zbl 0816.26008, MR 1283432 |
Reference:
|
[198] J. Kinnunen, J. L. Lewis: Higher integrability for parabolic systems of $p$-Laplacian type.Duke Math. J. 102 (2000), 253–271. MR 1749438 |
Reference:
|
[199] J. Kinnunen, S. Zhou: A local estimate for nonlinear equations with discontinuous coefficients.Commun. Partial Differ. Equations 24 (1999), 2043–2068. MR 1720770 |
Reference:
|
[200] B. Kirchheim, S. Müller, and V. Šverák: Studying nonlinear pde by geometry in matrix space.In: Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 2003, pp. 347–395. MR 2008346 |
Reference:
|
[201] A. Koshelev: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics 1614.Springer-Verlag, Berlin, 1995. MR 1442954 |
Reference:
|
[202] J. Kristensen: On the non-locality of quasiconvexity.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 1–13. Zbl 0932.49015, MR 1668552 |
Reference:
|
[203] J. Kristensen: Lower semicontinuity in spaces of weakly differentiable functions.Math. Ann. 313 (1999), 653–710. Zbl 0924.49012, MR 1686943 |
Reference:
|
[204] J. Kristensen, G. Mingione: The singular set of $\omega $-minima.Arch. Ration. Mech. Anal. 177 (2005), 93–114. MR 2187315 |
Reference:
|
[205] J. Kristensen, G. Mingione: Non-differentiable functionals and singular sets of minima.C. R. Acad. Sci. Paris 340 (2005), 93–98. MR 2112048 |
Reference:
|
[206] J. Kristensen, G. Mingione: The singular set of minima of integral functionals.Arch. Ration. Mech. Anal. 180 (2006), 331–398. MR 2214961 |
Reference:
|
[207] J. Kristensen, G. Mingione: The singular set of Lipschitzian minima of multiple integrals.Arch. Ration. Mech. Anal (to appear). MR 2299766 |
Reference:
|
[208] J. Kristensen, G. Mingione: The singular set of solutions to elliptic problems with rough coefficients.In preparation. |
Reference:
|
[209] J. Kristensen, A. Taheri: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations.Arch. Ration. Mech. Anal. 170 (2003), 63–89. MR 2012647 |
Reference:
|
[210] M. Kronz: Quasimonotone systems of higher order.Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 6 (2003), 459–480. MR 1988216 |
Reference:
|
[211] M. Kronz: Boundary regularity for almost minimizers of quasiconvex variational problems.Nonlinear Differ. Equations Appl. 12 (2005), 351–382. Zbl 1116.49019, MR 2186336 |
Reference:
|
[212] M. Kronz: Habilitation Thesis.University of Erlangen-Nürneberg, Erlangen, 2006. |
Reference:
|
[213] O. A. Ladyzhenskaya, N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering 46.Academic Press, New York-London, 1968. MR 0244627 |
Reference:
|
[214] O. A. Ladyzhenskaya, N. N. Ural’tseva: Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations.Commun. Pure Appl. Math. Ser. IX 23 (1970), 677–703. MR 0265745 |
Reference:
|
[215] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, Vol. 23.Amer. Math. Soc., Providence, 1968. |
Reference:
|
[216] F. Leonetti: Maximum principle for vector-valued minimizers of some integral functionals.Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 51–56. Zbl 0729.49015, MR 1101010 |
Reference:
|
[217] F. Leonetti: Higher differentiability for weak solutions of elliptic systems with nonstandard growth conditions.Ric. Mat. 42 (1993), 101–122. Zbl 0855.35022, MR 1283808 |
Reference:
|
[218] F. Leonetti: Higher integrability for minimizers of integral functionals with nonstandard growth.J. Differ. Equations 112 (1994), 308–324. Zbl 0813.49030, MR 1293473 |
Reference:
|
[219] F. Leonetti: Regularity results for minimizers of integral functionals with nonstandard growth.Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 425–429. Zbl 0851.49025, MR 1366070 |
Reference:
|
[220] F. Leonetti: Pointwise estimates for a model problem in nonlinear elasticity.Forum Mathematicum 18 (2006), 529–535. Zbl 1125.49029, MR 2237933 |
Reference:
|
[221] F. Leonetti, V. Nesi: Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton.J. Math. Pures Appl. 76 (1997), 109–124. MR 1432370 |
Reference:
|
[222] G. M. Lieberman: Gradient estimates for a class of elliptic systems.Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 103–120. Zbl 0819.35019, MR 1243951 |
Reference:
|
[223] G. M. Lieberman: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations.Commun. Partial Differ. Equations 16 (1991), 311–361. Zbl 0742.35028, MR 1104103 |
Reference:
|
[224] G. M. Lieberman: On the regularity of the minimizer of a functional with exponential growth.Commentat. Math. Univ. Carol. 33 (1992), 45–49. Zbl 0776.49026, MR 1173745 |
Reference:
|
[225] G. M. Lieberman: Gradient estimates for a new class of degenerate elliptic and parabolic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 21 (1994), 497–522. Zbl 0839.35018, MR 1318770 |
Reference:
|
[226] G. M. Lieberman: Gradient estimates for anisotropic elliptic equations.Adv. Differ. Equ. 10 (2005), 767–182. Zbl 1144.35388, MR 2152352 |
Reference:
|
[227] P. Lindqvist: On the definition and properties of $p$-superharmonic functions.J. Reine Angew. Math. 365 (1986), 67–79. Zbl 0572.31004, MR 0826152 |
Reference:
|
[228] J.- L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. (French) Zbl 0189.40603, MR 0259693 |
Reference:
|
[229] G. Lucas & co.: “Star Wars Episode 5: The empire strikes back”—Act, Darth Vader: “Come with me to the Dark Side...”.(1982). |
Reference:
|
[230] J. Malý, W. P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, 51.Amer. Math. Soc., Providence, 1997. MR 1461542 |
Reference:
|
[231] J. J. Manfredi: Regularity for minima of functionals with $p$-growth.J. Differ. Equations 76 (1988), 203–212. Zbl 0674.35008, MR 0969420 |
Reference:
|
[232] J. J. Manfredi: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations.PhD. Thesis, University of Washington, St. Louis, . |
Reference:
|
[233] P. Marcellini: On the definition and the lower semicontinuity of certain quasiconvex integrals.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 391–409. Zbl 0609.49009, MR 0868523 |
Reference:
|
[234] P. Marcellini: Un esemple de solution discontinue d’un problème variationnel dans le case scalaire.Ist. Mat. “U. Dini" No. 11, Firenze, 1987. (Italian) |
Reference:
|
[235] P. Marcellini: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions.Arch. Ration. Mech. Anal. 105 (1989), 267–284. Zbl 0667.49032, MR 0969900 |
Reference:
|
[236] P. Marcellini: Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions.J. Differ. Equations 90 (1991), 1–30. Zbl 0724.35043, MR 1094446 |
Reference:
|
[237] P. Marcellini: Regularity for elliptic equations with general growth conditions.J. Differ. Equations 105 (1993), 296–333. Zbl 0812.35042, MR 1240398 |
Reference:
|
[238] P. Marcellini: Everywhere regularity for a class of elliptic systems without growth conditions.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 1–25. Zbl 0922.35031, MR 1401415 |
Reference:
|
[239] P. Marcellini: Regularity for some scalar variational problems under general growth conditions.J. Optimization Theory Appl. 90 (1996), 161–181. Zbl 0901.49030, MR 1397651 |
Reference:
|
[240] P. Marcellini: Alcuni recenti sviluppi nei problemi 19-esimo e 20-esimo di Hilbert.Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 323–352. (Italian) |
Reference:
|
[241] P. Marcellini, G. Papi: Nonlinear elliptic systems with general growth.J. Differ. Equations 221 (2006), 412–443. MR 2196484 |
Reference:
|
[242] P. Marcellini, C. Sbordone: On the existence of minima of multiple integrals of the calculus of variations.J. Math. Pures Appl., IX. Sér. 62 (1983), 1–9. MR 0700045 |
Reference:
|
[243] E. Mascolo, G. Migliorini: Everywhere regularity for vectorial functionals with general growth.ESAIM, Control Optim. Calc. Var. 9 (2003), 399–418. MR 1988669 |
Reference:
|
[244] E. Mascolo, G. Papi: Local boundedness of minimizers of integrals of the calculus of variations.Ann. Mat. Pura Appl., IV. Ser. 167 (1994), 323–339. MR 1313560 |
Reference:
|
[245] E. Mascolo, G. Papi: Harnack inequality for minimizers of integral functionals with general growth conditions.NoDEA, Nonlinear Differ. Equ. Appl. 3 (1996), 231–244. MR 1385885 |
Reference:
|
[246] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Adv. Math., 44.Cambridge University Press, Cambridge, 1995. MR 1333890 |
Reference:
|
[247] V. Maz’ya: Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients.Funct. Anal. Appl. 2 (1968), 230–234. MR 0237946 |
Reference:
|
[248] G. Mingione: The singular set of solutions to non-differentiable elliptic systems.Arch. Ration. Mech. Anal. 166 (2003), 287–301. Zbl 1142.35391, MR 1961442 |
Reference:
|
[249] G. Mingione: Bounds for the singular set of solutions to non linear elliptic systems.Calc. Var. Partial Differ. Equ. 18 (2003), 373–400. Zbl 1045.35024, MR 2020367 |
Reference:
|
[250] G. Mingione, D. Mucci: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration.SIAM J. Math. Anal. 36 (2005), 1540–1579. MR 2139562 |
Reference:
|
[251] G. Mingione, F. Siepe: Full $C^{1,\alpha }$-regularity for minimizers of integral functionals with $L\log L$-growth.Z. Anal. Anwend. 18 (1999), 1083–1100. MR 1736253 |
Reference:
|
[252] C. B. Morrey: Review to [77].Mathematical Reviews MR0093649 (20 #172). |
Reference:
|
[253] C. B. Morrey: Second order elliptic equations in several variables and Hölder continuity.Math. Z. 72 (1959), 146–164. Zbl 0094.07802, MR 0120446 |
Reference:
|
[254] C. B. Morrey: Quasi-convexity and the lower semicontinuity of multiple integrals.Pac. J. Math. 2 (1952), 25–53. Zbl 0046.10803, MR 0054865 |
Reference:
|
[255] C. B. Morrey: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften, 130.Springer-Verlag, Berlin-Heidelberg-New York, 1966. MR 0202511 |
Reference:
|
[256] C. B. Morrey: Partial regularity results for non-linear elliptic systems.J. Math. Mech. 17 (1968), 649–670. Zbl 0175.11901, MR 0237947 |
Reference:
|
[257] G. Moscariello, L. Nania: Hölder continuity of minimizers of functionals with nonstandard growth conditions.Ric. Mat. 40 (1991), 259–273. MR 1194158 |
Reference:
|
[258] J. Moser: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations.Commun. Pure Appl. Math. 13 (1960), 457–468. Zbl 0111.09301, MR 0170091 |
Reference:
|
[259] J. Moser: On Harnack’s theorem for elliptic differential equations.Commun. Pure Appl. Math. 14 (1961), 577–591. Zbl 0111.09302, MR 0159138 |
Reference:
|
[260] J. Moser: A Harnack inequality for parabolic differential equations.Commun. Pure Appl. Math. 17 (1964), 101–134. Zbl 0149.06902, MR 0159139 |
Reference:
|
[261] S. Müller: Variational models for microstructure and phase transitions.In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Math., 1713, S. Hildebrandt (ed.), Springer-Verlag, Berlin, 1999, pp. 85–210. MR 1731640 |
Reference:
|
[262] S. Müller, V. Šverák: Convex integration for Lipschitz mappings and counterexamples to regularity.Ann. Math. 157 (2003), 715–742. MR 1983780 |
Reference:
|
[263] J. Musielak: Orlicz spaces and Modular spaces. Lecture Notes in Mathematics, 1034.Springer-Verlag, Berlin, 1983. MR 0724434 |
Reference:
|
[264] J. Nash: Continuity of solutions of parabolic and elliptic equations.Am. J. Math. 80 (1958), 931–954. Zbl 0096.06902, MR 0100158 |
Reference:
|
[265] J. Nečas: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity.In: Theor. Nonlin. Oper., Constr. Aspects. Proc. 4th Int. Summer School, Akademie-Verlag, Berlin, 1975, pp. 197–206. MR 0509483 |
Reference:
|
[266] J. Nečas, O. John, and J. Stará: Counterexample to the regularity of weak solution of elliptic systems.Commentat. Math. Univ. Carol. 21 (1980), 145–154. MR 0566246 |
Reference:
|
[267] L. Nirenberg: Remarks on strongly elliptic partial differential equations.Commun. Pure Appl. Math. 8 (1955), 649–675. Zbl 0067.07602, MR 0075415 |
Reference:
|
[268] D. Phillips: On one-homogeneous solutions to elliptic systems in two dimensions.C. R., Math., Acad. Sci. Paris 335 (2002), 39–42. Zbl 1006.35031, MR 1920431 |
Reference:
|
[269] L. Piccinini, S. Spagnolo: On the Hölder continuity of solutions of second order elliptic equations in two variables.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 391–402. MR 0361422 |
Reference:
|
[270] K. R. Rajagopal, T. Růžička: Mathematical modeling of electrorheological materials.Contin. Mech. and Thermodyn. 13 (2001), 59–78. |
Reference:
|
[271] M. M. Rao, Z. D. Ren: Theory of Orlicz spaces.Pure and Applied Mathematics, 146 Marcel Dekker, New York, 1991. MR 1113700 |
Reference:
|
[272] J.-P. Raymond: Lipschitz regularity of solutions of some asymptotically convex problems.Proc. R. Soc. Edinb., Sect. A 117 (1991), 59–73. Zbl 0725.49012, MR 1096219 |
Reference:
|
[273] T. Rivière: Everywhere discontinuous harmonic maps into spheres.Acta Math. 175 (1995), 197–226. MR 1368247 |
Reference:
|
[274] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748.Springer-Verlag, Berlin, 2000. MR 1810360 |
Reference:
|
[275] A. Salli: On the Minkowski dimension of strongly porous fractal sets in ${R}^n$.Proc. Lond. Math. Soc., III. Ser. 62 (1991), 353–372. MR 1085645 |
Reference:
|
[276] S. Samko: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators.Integral Transforms Spec. Funct. 16 (2005), 461–482. Zbl 1069.47056, MR 2138062 |
Reference:
|
[277] C. Sbordone: Rearrangement of functions and reverse Hölder inequalities. Ennio De Giorgi colloq., H. Poincaré Inst., Paris, 1983.Res. Notes Math. 125 (1985), 139–148. MR 0909714 |
Reference:
|
[278] R. Schoen, K. Uhlenbeck: A regularity theory for harmonic maps.J. Differ. Geom. 17 (1982), 307–335. MR 0664498 |
Reference:
|
[279] J. Serrin: Local behavior of solutions of quasi-linear equations.Acta Math. 111 (1964), 247–302. Zbl 0128.09101, MR 0170096 |
Reference:
|
[280] L. Simon: Global estimates of Hölder continuity for a class of divergence-form elliptic equations.Arch. Ration. Mech. Anal. 56 (1974), 253–272. MR 0352696 |
Reference:
|
[281] L. Simon: Interior gradient bounds for non-uniformly elliptic equations.Indiana Univ. Math. J. 25 (1976), 821–855. MR 0412605 |
Reference:
|
[282] L. Simon: Rectifiability of the singular set of energy minimizing maps.Calc. Var. Partial Differ. Equ. 3 (1995), 1–65. Zbl 0818.49023, MR 1384836 |
Reference:
|
[283] L. Simon: Lectures on Regularity and Singularities of Harmonic Maps.Birkhäuser-Verlag, Basel-Boston-Berlin, 1996. MR 1399562 |
Reference:
|
[284] J. Souček: Singular solutions to linear elliptic systems.Commentat. Math. Univ. Carol. 25 (1984), 273–281. MR 0768815 |
Reference:
|
[285] G. Stampacchia: Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie hölderiane.Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 1–37. (Italian) MR 0126601 |
Reference:
|
[286] G. Stampacchia: Hilbert’s twenty-third problem: extensions of the calculus of variations.In: Mathematical developments arising from Hilbert problems. Proc. Symp. Pure Math. 28, De Kalb 1974, , , 1976, pp. 611–628. Zbl 0345.49002, MR 0428150 |
Reference:
|
[287] P. Sternberg, G. Williams, and W. P. Ziemer: Existence, uniqueness, and regularity for functions of least gradient.J. Reine Angew. Math. 430 (1992), 35–60. MR 1172906 |
Reference:
|
[288] E. W. Stredulinsky: Higher integrability from reverse Hölder inequalities.Indiana Univ. Math. J. 29 (1980), 407–413. Zbl 0442.35064, MR 0570689 |
Reference:
|
[289] B. Stroffolini: Global boundedness of solutions of anisotropic variational problems.Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 345–352. Zbl 0754.49026, MR 1138548 |
Reference:
|
[290] V. Šverák, X. Yan: A singular minimizer of a smooth strongly convex functional in three dimensions.Calc. Var. Partial Differ. Equ. 10 (2000), 213–221. MR 1756327 |
Reference:
|
[291] V. Šverák, X. Yan: Non-Lipschitz minimizers of smooth uniformly convex variational integrals.Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. MR 1946762 |
Reference:
|
[292] L. Székelyhidi, Jr.: The regularity of critical points of polyconvex functionals.Arch. Ration. Mech. Anal. 172 (2004), 133–152. Zbl 1049.49017, MR 2048569 |
Reference:
|
[293] L. Székelyhidi, Jr.: Rank-one convex hulls in $\mathbb{R}^{2\times 2}$.Calc. Var. Partial Differ. Equ. 22 (2005), 253–281. MR 2118899 |
Reference:
|
[294] G. Talenti: Boundedness of minimizers.Hokkaido Math. J. 19 (1990), 259–279. Zbl 0723.58015, MR 1059170 |
Reference:
|
[295] Qi Tang: Regularity of minimizers of nonisotropic integrals of the calculus of variations.Ann. Mat. Pura Appl., IV. Ser. 164 (1993), 77–87. MR 1243949 |
Reference:
|
[296] N. S. Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations.Commun. Pure Appl. Math. 20 (1967), 721–747. Zbl 0153.42703, MR 0226198 |
Reference:
|
[297] N. S. Trudinger: Pointwise estimates and quasilinear parabolic equations.Commun. Pure Appl. Math. 21 (1968), 205–226. Zbl 0159.39303, MR 0226168 |
Reference:
|
[298] N. S. Trudinger: On the regularity of generalized solutions of linear, non-uniformly elliptic equations.Arch. Ration. Mech. Anal. 42 (1971), 50–62. Zbl 0218.35035, MR 0344656 |
Reference:
|
[299] N. S. Trudinger: Linear elliptic operators with measurable coefficients.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 27 (1973), 265–308. Zbl 0279.35025, MR 0369884 |
Reference:
|
[300] N. S. Trudinger, X.-J. Wang: On the weak continuity of elliptic operators and applications to potential theory.Amer. J. Math. 124 (2002), 369–410. MR 1890997 |
Reference:
|
[301] K. Uhlenbeck: Regularity for a class of non-linear elliptic systems.Acta Math. 138 (1977), 219–240. MR 0474389 |
Reference:
|
[302] N. N. Ural’tseva: Degenerate quasilinear elliptic systems.Semin. in Mathematics, V. A. Steklov Math. Inst., Leningrad 7 (1968), 83–99. MR 0244628 |
Reference:
|
[303] N. N. Ural’tseva, A. B. Urdaletova: The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations.Vestn. Leningr. Univ., Math. 16 (1984), 263–270. |
Reference:
|
[304] K.-O. Widman: Hölder continuity of solutions of elliptic systems.Manuscr. Math. 5 (1971), 299–308. Zbl 0223.35044, MR 0296484 |
Reference:
|
[305] J. Wolf: Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition.Z. Anal. Anwend. 20 (2001), 315–330. Zbl 1163.35329, MR 1846604 |
Reference:
|
[306] K.-W. Zhang: On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form.In: Partial Differential Equations, Proc. Symp. Tianjin/China, 1986. Lect. Notes Math. 1306, Springer-Verlag, Berlin, 1988, pp. 262–277. Zbl 0672.35026, MR 1032785 |
Reference:
|
[307] V. V. Zhikov: Averaging of functionals of the calculus of variations and elasticity theory.Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710. Zbl 0599.49031, MR 0864171 |
Reference:
|
[308] V. V. Zhikov: On Lavrentiev’s phenomenon.Russ. J. Math. Phys. 3 (1995), 249–269. Zbl 0910.49020, MR 1350506 |
Reference:
|
[309] V. V. Zhikov: On some variational problems.Russ. J. Math. Phys. 5 (1997), 105–116. Zbl 0917.49006, MR 1486765 |
Reference:
|
[310] V. V. Zhikov: Meyer-type estimates for solving the nonlinear Stokes system.Differ. Equations 33 (1997), 108–115. MR 1607245 |
Reference:
|
[311] V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik: Homogenization of differential operators and integral functionals.Springer-Verlag, Berlin, 1994. MR 1329546 |
. |