Title:
|
On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems (English) |
Author:
|
Knobloch, Petr |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
5 |
Year:
|
2006 |
Pages:
|
473-493 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of $n$th order accuracy in the energy norm called $P_n^{}$ elements. For $n\le 3$ we show that the stability condition holds if the velocity space is constructed using the $P_n^{}$ elements and the pressure space consists of continuous piecewise polynomial functions of degree $n$. (English) |
Keyword:
|
nonconforming finite element method |
Keyword:
|
inf-sup condition |
Keyword:
|
incompressible flow problem |
MSC:
|
65N12 |
MSC:
|
65N30 |
MSC:
|
76D05 |
MSC:
|
76M10 |
idZBL:
|
Zbl 1164.76325 |
idMR:
|
MR2261635 |
DOI:
|
10.1007/s10492-006-0017-7 |
. |
Date available:
|
2009-09-22T18:26:58Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134649 |
. |
Reference:
|
[1] M. Ainsworth, P. Coggins: A uniformly stable family of mixed $hp$-finite elements with continuous pressures for incompressible flow.IMA J. Numer. Anal. 22 (2002), 307–327. MR 1897411, 10.1093/imanum/22.2.307 |
Reference:
|
[2] C. Bernardi, F. Hecht: More pressure in the finite element discretization of the Stokes problem.M2AN, Math. Model. Numer. Anal. 34 (2000), 953–980. MR 1837763, 10.1051/m2an:2000111 |
Reference:
|
[3] J. Boland, R. Nicolaides: Stability of finite elements under divergence constraints.SIAM J. Numer. Anal. 20 (1983), 722–731. MR 0708453, 10.1137/0720048 |
Reference:
|
[4] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, 1991. MR 1115205 |
Reference:
|
[5] P. G. Ciarlet: Basic error estimates for elliptic problems.In: Handbook of Numerical Analysis, Vol. II: Finite Element Methods (Part 1), P. G. Ciarlet, J.-L. Lions (eds.), North-Holland, Amsterdam, 1991, pp. 17–351. Zbl 0875.65086, MR 1115237 |
Reference:
|
[6] M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–76. MR 0343661 |
Reference:
|
[7] M. Crouzeix, R. S. Falk: Nonconforming finite elements for the Stokes problem.Math. Comput. 52 (1989), 437–456. MR 0958870, 10.1090/S0025-5718-1989-0958870-8 |
Reference:
|
[8] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations.Springer-Verlag, Berlin, 1986. MR 0851383 |
Reference:
|
[9] V. John: Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern.PhD. Thesis, Otto-von-Guericke-Universität, Magdeburg, 1997. |
Reference:
|
[10] V. John, P. Knobloch, G. Matthies, L. Tobiska: Non-nested multi-level solvers for finite element discretisations of mixed problems.Computing 68 (2002), 313–341. MR 1921254, 10.1007/s00607-002-1444-2 |
Reference:
|
[11] P. Knobloch: On the application of the $P_1^{\mathop {\mathrm mod}}$ element to incompressible flow problems.Comput. Visual. Sci. 6 (2004), 185–195. MR 2071439, 10.1007/s00791-004-0127-2 |
Reference:
|
[12] P. Knobloch: New nonconforming finite elements for solving the incompressible Navier-Stokes equations.In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2001, F. Brezzi et al. (eds.), Springer-Verlag Italia, Milano, 2003, pp. 123–132. Zbl 1283.76033, MR 2360713 |
Reference:
|
[13] P. Knobloch: On the inf-sup condition for the $P_3^{\mathop {\mathrm mod}}/P_2^{\mathrm disc}$ element.Computing 76 (2006), 41–54. MR 2174350 |
Reference:
|
[14] P. Knobloch, L. Tobiska: The $P_1^{\mathop {\mathrm mod}}$ element: A new nonconforming finite element for convection-diffusion problems.SIAM J. Numer. Anal. 41 (2003), 436–456. MR 2004183, 10.1137/S0036142902402158 |
Reference:
|
[15] F. Schieweck: Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen.Habilitationsschrift, Otto-von-Guericke-Universität, Magdeburg, 1997. (German) Zbl 0915.76051 |
Reference:
|
[16] L. R. Scott, M. Vogelius: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 111–143. MR 0813691, 10.1051/m2an/1985190101111 |
Reference:
|
[17] R. Stenberg: Analysis of mixed finite element methods for the Stokes problem: a unified approach.Math. Comput. 42 (1984), 9–23. Zbl 0535.76037, MR 0725982 |
Reference:
|
[18] S. Turek: Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach.Springer-Verlag, Berlin, 1999. Zbl 0930.76002, MR 1691839 |
. |