Previous |  Up |  Next

Article

Title: The Neumann problem for some degenerate elliptic equations (English)
Author: Cavalheiro, Albo Carlos
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 6
Year: 2006
Pages: 619-628
Summary lang: English
.
Category: math
.
Summary: In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set ${\Omega }$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem. (English)
Keyword: Neumann problem
Keyword: degenerate elliptic equations
MSC: 35J25
MSC: 35J70
idZBL: Zbl 1164.35362
idMR: MR2291786
DOI: 10.1007/s10492-006-0025-7
.
Date available: 2009-09-22T18:27:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134657
.
Reference: [1] S.  Chanillo, R. L.  Wheeden: Harnack’s inequalities and mean-value inequalities for solutions of degenerate elliptic equations.Commun. PDE 11 (1986), 1111–1134. MR 0847996, 10.1080/03605308608820458
Reference: [2] S.  Chanillo, R. L.  Wheeden: Existence and estimates for Green’s function for degenerate elliptic equations.Ann. Sc. Norm. Super. Pisa IV ser. 15, Fasc.  II (1988), 309–340. MR 1007400
Reference: [3] B.  Franchi, R.  Serapioni: Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approch.Ann. Sc. Norm. Sup. Pisa C1 ser. 14 (1987), 527–568. MR 0963489
Reference: [4] B.  Muckenhoupt: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [5] A.  Torchinsky: Real-Variable Methods in Harmonic Analysis.Academic Press, Orlando, 1986. Zbl 0621.42001, MR 0869816
Reference: [6] A.  Kufner, O.  John, and S.  Fučík: Function Spaces.Noordhoff International Publishing, Leyden, 1977. MR 0482102
Reference: [7] A.  Kufner: Weighted Sobolev Spaces.John Wiley & Sons, New York, 1985. Zbl 0579.35021, MR 0802206
Reference: [8] J.  Heinonen, T.  Kilpeläinen, and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs.Clarendon Press, Oxford, 1993. MR 1207810
Reference: [9] J.  Garcia-Cuerva, J. L.  Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies  116.North Holland, Amsterdam-New York-Oxford, 1985. MR 0807149
Reference: [10] B. O.  Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lectures Notes in Mathematics Vol.  1736.Springer-Verlag, Berlin, 2000. MR 1774162
Reference: [11] V.  Chiadò Piat, F.  Serra Cassano: Relaxation of degenerate variational integrals.Nonlinear Anal., Theory Methods Appl. 22 (1994), 409–424. MR 1266369, 10.1016/0362-546X(94)90165-1
.

Files

Files Size Format View
AplMat_51-2006-6_6.pdf 316.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo