Previous |  Up |  Next

Article

Title: Global information in statistical experiments and consistency of likelihood-based estimates and tests (English)
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 3
Year: 1998
Pages: [245]-263
Summary lang: English
.
Category: math
.
Summary: In the framework of standard model of asymptotic statistics we introduce a global information in the statistical experiment about the occurrence of the true parameter in a given set. Basic properties of this information are established, including relations to the Kullback and Fisher information. Its applicability in point estimation and testing statistical hypotheses is demonstrated. (English)
Keyword: information divergence
Keyword: point estimation
Keyword: testing statistical hypotheses
MSC: 62B10
MSC: 62B15
MSC: 62F03
MSC: 62F10
MSC: 62F12
idZBL: Zbl 1274.62069
idMR: MR1640962
.
Date available: 2009-09-24T19:16:02Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135206
.
Reference: [1] Bahadur R. R.: Some Limit Theorems in Statistics.SIAM, Philadelphia 1971 Zbl 0257.62015, MR 0315820
Reference: [2] Berk R. H.: Limiting behavior of posterior distributions when the model is incorrect.Ann. Math. Statist. 37 (1966), 51–58 Zbl 0151.23802, MR 0189176, 10.1214/aoms/1177699597
Reference: [3] Cover T. M., Thomas J. B.: Elements of Information Theory.Wiley, New York 1991 Zbl 1140.94001, MR 1122806
Reference: [4] Groot, M H. De: Uncertainty, information and sequential experiments.Ann. Math. Statist. 33 (1962), 404–419 MR 0139242, 10.1214/aoms/1177704567
Reference: [5] Groot M. H. De: Optimal Statistical Decisions.McGraw Hill, New York 1970 MR 0356303
Reference: [6] Gallager R. C.: Information Theory and Reliable Communication.Wiley, New York 1968 Zbl 0295.94001
Reference: [7] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [8] Kullback S.: Information Theory and Statistics.Wiley, New York 1959 Zbl 0897.62003, MR 0103557
Reference: [9] Lehman E. L.: Testing Statistical Hypotheses.Second edition. Wiley, New York 1986
Reference: [10] Liese F., Vajda I.: Necessary and sufficient conditions for consistency of generalized $M$-estimates.Metrika 42 (1995), 93–114 Zbl 0834.62024, 10.1007/BF01894328
Reference: [11] Lindley D. V.: On the measure of the information provided by an experiment.Ann. Math. Statist. 27 (1956), 986–1005 10.1214/aoms/1177728069
Reference: [12] Loéve M.: Probability Theory.Wiley, New York 1963
Reference: [13] Perlman M. D.: On the strong consistency of approximate maximum likelihood estimators.In: Proc. VIth Berkeley Symp. Prob. Math. Statist., 1972, pp. 263–281
Reference: [14] Pfanzagl J.: On the measurability and consistency of minimum contrast estimators.Metrika 14 (1969), 249–272 10.1007/BF02613654
Reference: [15] Pfanzagl J.: Parametric Statistical Theory.Walter de Guyter, Berlin 1994 Zbl 0807.62016
Reference: [16] Rao C. R.: Linear Statistical Inference and its Applications.Wiley, New York 1965 Zbl 0256.62002
Reference: [17] A: Rényi: On the amount of information concerning an unknown parameter in a sequence of observations.Publ. Math. Inst. Hungar. Acad. Sci., Sec. A 9 (1964), 617–625
Reference: [18] Rényi A.: Statistics and information theory.Stud. Scient. Math. Hungar. 2 (1967), 249–256 Zbl 0155.27602
Reference: [19] Rockafellar R. T.: Convex Analysis.Princeton Univ. Press, Princeton, N. J. 1970
Reference: [20] Strasser H.: Consistency of maximum likelihood and Bayes estimates.Ann. Statist. 9 (1981), 1107–1113 Zbl 0483.62019, 10.1214/aos/1176345590
Reference: [21] Strasser A.: Mathematical Theory of Statistics.DeGruyter, Berlin 1985 Zbl 0594.62017
Reference: [22] Torgersen E.: Comparison of Statistical Experiments.Cambridge Univ. Press, Cambridge 1991 Zbl 1158.62006
Reference: [23] Vajda I.: Conditions equivalent to consistency of approximate MLE’s for stochastic processes.Stochastic Process. Appl. 56 (1995), 35–56 Zbl 0817.62073, 10.1016/0304-4149(94)00069-6
.

Files

Files Size Format View
Kybernetika_34-1998-3_1.pdf 2.342Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo