Previous |  Up |  Next

Article

Title: Maximum likelihood principle and $I$-divergence: continuous time observations (English)
Author: Michálek, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 3
Year: 1998
Pages: [289]-308
Summary lang: English
.
Category: math
.
Summary: The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the continuous time. (English)
Keyword: maximum likelihood estimation
Keyword: information divergence
Keyword: Gaussian process
Keyword: autoregressive processes
MSC: 62B10
MSC: 62F10
MSC: 62F12
MSC: 62M10
idZBL: Zbl 1274.62067
idMR: MR1640970
.
Date available: 2009-09-24T19:16:16Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135208
.
Related article: http://dml.cz/handle/10338.dmlcz/135207
.
Reference: [1] Anděl J.: Statistical Analysis of Time Series (in Czech).SNTL, Prague 1976
Reference: [2] Dzhaparidze K.: Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series.(Springer Series in Statistics.) Springer Verlag, Berlin 1986 Zbl 0584.62157, MR 0812272
Reference: [3] Hájek J.: On the simple linear model for Gaussian processes.In: Trans. of the 2nd Prague Conference, Academia, Prague 1959, pp. 185–197
Reference: [4] Hájek J.: On linear statistical problems in stochastic processes.Czechoslovak Math. J. 12 (87) (1962), 404–444 MR 0152090
Reference: [5] Michálek J.: Asymptotic Rényi’s rate of Gaussian processes.Problems Control Inform. Theory 19 (1990), 3, 209–227 Zbl 0705.62079
Reference: [6] Michálek J.: Maximum likelihood principle and $I$-divergence: observations in discrete time.Kybernetika 34 (1998), 265–288 MR 1640966
Reference: [7] Pisarenko V. F.: On absolute continuity of the measures corresponding to a rational spectral density function (in Russian).Teor. Veroyatnost. i Primenen. IV (1959), 481–481
Reference: [8] Pisarenko V. F.: On parameter estimations of a Gaussian stationary processes with a spectral density function (in Russian).Lithuanian Math. J. (1962)
Reference: [9] Rozanov J. A.: On application a central limit theorem.In: Proc. Fourth Berkeley Symp. Math. Stat. Prob., Berkeley 1961, Vol. 2
.

Files

Files Size Format View
Kybernetika_34-1998-3_3.pdf 2.278Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo