Previous |  Up |  Next

Article

Title: A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers (English)
Author: Kudo, Mineichi
Author: Sklansky, Jack
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 34
Issue: 4
Year: 1998
Pages: [429]-434
Summary lang: English
.
Category: math
.
Summary: Needs of feature selection in medium and large problems increases in many fields including medical and image processing fields. Previous comparative studies of feature selection algorithms are not satisfactory in problem size and in criterion function. In addition, no way has not shown to compare algorithms with different objectives. In this study, we propose a unified way to compare a large variety of algorithms. Our results show that the sequential floating algorithms promises for up to medium problems and genetic algorithms for medium and large problems. (English)
Keyword: feature selection
Keyword: pattern classifiers
MSC: 68T10
MSC: 68U99
idZBL: Zbl 1274.68668
.
Date available: 2009-09-24T19:18:31Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135227
.
Reference: [1] Ferri F. J., Pudil P., Hatef M., Kittler J.: 1994.Comparative study of techniques for large–scale feature selection. In: Pattern Recognition in Practice IV (E. S. Gelsema and L. N. Kanal, eds.), Elsevier Science B. V. 1994, pp. 403–413
Reference: [2] Foroutan I., Sklansky J.: Feature selection for automatic classification of non–gaussian data.IEEE. Trans. Systems Man Cybernet. 17 (1987), 187–198 10.1109/TSMC.1987.4309029
Reference: [3] Kittler J.: 1978.Feature set search algorithms. In: Pattern Recognition and Signal Processing (C. H. Chen, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn 1978, pp. 41–60
Reference: [4] Murphy P. M., Aha D. W.: UCI Repository of machine learning databases [Machine–readable dta repository].Department of Information and Computation Science University of California, Irivne 1996
Reference: [5] Pudil P., Novovičová J., Kittler J.: Floating search methods in feature selection.Pattern Recognition Lett. 15 (1994), 1119–1125 10.1016/0167-8655(94)90127-9
Reference: [6] Siedlecki W., Sklansky J.: A note on genetic algorithms for large–scale feature selection.Pattern Recognition Lett. 10 (1989), 335–347 Zbl 0942.68690, 10.1016/0167-8655(89)90037-8
Reference: [7] Sklansky J., Siedlecki W.: Large–scale feature selection.In: Handbook of Pattern Recognition and Computer Vision (L. F. Pau, C. H. Chen and P. S. P. Wang, eds.), Chapter 1.3, World Scientific 1993, pp. 61–123
Reference: [8] Vriesenga M. R.: Genetic Selection and Neureal Modeling for Designing Pattern Classifier.Doctor Thesis, University of California, Irvine 1995
Reference: [9] Yu B., Yuan B.: A more efficient branch and bound algorithm for feature selection.Pattern Recognition 26 (1993), 6, 883–889 10.1016/0031-3203(93)90054-Z
Reference: [10] Zongker D., Jain A.: Algorithms for feature selection: An evaluation.In: 13th International Conference on Pattern Recognition 1996, pp. 18–22
.

Files

Files Size Format View
Kybernetika_34-1998-4_13.pdf 948.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo