Previous |  Up |  Next

Article

Title: Controllability in the max-algebra (English)
Author: Prou, Jean-Michel
Author: Wagneur, Edouard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 1
Year: 1999
Pages: [13]-24
Summary lang: English
.
Category: math
.
Summary: We are interested here in the reachability and controllability problems for DEDS in the max-algebra. Contrary to the situation in linear systems theory, where controllability (resp observability) refers to a (linear) subspace, these properties are essentially discrete in the $\max $-linear dynamic system. We show that these problems, which consist in solving a $\max $-linear equation lead to an eigenvector problem in the $\min $-algebra. More precisely, we show that, given a $\max $-linear system, then, for every natural number $k\ge 1\,$, there is a matrix $\Gamma _k$ whose $\min $-eigenspace associated with the eigenvalue $1$ (or $\min $-fixed points set) contains all the states which are reachable in $k$ steps. This means in particular that if a state is not in this eigenspace, then it is not controllable. Also, we give an indirect characterization of $\Gamma _k$ for the condition to be sufficient. A similar result also holds by duality on the observability side. (English)
Keyword: reachability
Keyword: controllability
Keyword: max-algebra
MSC: 15A80
MSC: 93B05
MSC: 93B18
MSC: 93C65
idZBL: Zbl 1274.93036
idMR: MR1705527
.
Date available: 2009-09-24T19:22:54Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135264
.
Reference: [1] G: Birkhoff: Lattice Theory.A.M.S. Coll. Pub. Vol. XXV, Providence 1967 MR 0227053
Reference: [2] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity.Wiley, Chichester 1992 Zbl 0824.93003, MR 1204266
Reference: [3] Cunninghame–Green R. A.: Minimax Algebra.(Lecture Notes in Economics and Mathematical Systems 83.) Springer–Verlag, Berlin 1979 MR 0580321
Reference: [4] Gaubert S.: Théorie des Systèmes linéaires dans les Dioïdes.Thèse. Ecole Nationale Supérieure des Mines de Paris 1992
Reference: [5] Gazarik M. J., Kamen E. W.: Reachability and observability of linear system over Max–Plus.In: 5th IEEE Mediterranean Conference on Control and Systems, Paphos 1997, revised version: Kybernetika 35 (1999), 2–12 MR 1705526
Reference: [6] Gondran M., Minoux M.: Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes.EDF Bull. Direction Études Rech. Sér. C Math. Inform. 2 (1977), 25–41
Reference: [8] Prou J.-M.: Thèse.Ecole Centrale de Nantes 1997
Reference: [9] Wagneur E.: Moduloïds and Pseudomodules.1. Dimension Theory. Discrete Math. 98 (1991), 57–73 Zbl 0757.06008, MR 1139597, 10.1016/0012-365X(91)90412-U
.

Files

Files Size Format View
Kybernetika_35-1999-1_3.pdf 1.482Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo