Previous |  Up |  Next

Article

Title: Constrained stabilization of a dynamic systems: a case study (English)
Author: Blanchini, F.
Author: Cotterli, S.
Author: Koruza, G.
Author: Miani, S.
Author: Siagri, R.
Author: Tubaro, L.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 1
Year: 1999
Pages: [93]-104
Summary lang: English
.
Category: math
.
Summary: In this work we consider the problem of determining and implementing a state feedback stabilizing control law for a laboratory two-tank dynamic system in the presence of state and control constraints. We do this by exploiting the properties of the polyhedral Lyapunov functions, i. e. Lyapunov functions whose level surfaces are polyhedra, in view of their capability of providing an arbitrarily good approximation of the maximal set of attraction, which is the largest set of initial states which can be brought to the origin with a guaranteed convergence speed. We will first recall the basic theoretical background necessary for the scope and then we will report and analyze the results of the practical implementation on a two-tank laboratory system of a linear variable-structure and a quantized control law proposed in literature. Finally an heuristic procedure for the determination of a static linear gain will be presented. (English)
Keyword: state feedback stabilization
Keyword: polyhedral Lyapunov function
Keyword: constrained system
Keyword: laboratory two-tank dynamic system
Keyword: control law
Keyword: convergence speed
Keyword: level surfaces
Keyword: static linear gain
Keyword: heuristic procedure
MSC: 90C59
MSC: 93C95
MSC: 93D15
idZBL: Zbl 1274.93226
idMR: MR1705533
.
Date available: 2009-09-24T19:23:38Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135270
.
Reference: [1] Benzaouia A., Burgat C.: The regulator problem for a class of linear systems with constrained control.Systems Control Lett. 10 (1988), 357–363 MR 0944062, 10.1016/0167-6911(88)90026-6
Reference: [2] Blanchini F.: Constrained control for uncertain linear systems.J. Optim. Theory Appl. 71 (1991), 3, 465–484 Zbl 0794.49015, MR 1137149, 10.1007/BF00941398
Reference: [3] Blanchini F.: Nonquadratic Lyapunov functions for robust control.Automatica 31 (1995), 3, 451–461 Zbl 0825.93653, MR 1321013, 10.1016/0005-1098(94)00133-4
Reference: [4] Blanchini F., Miani S.: Constrained stabilization of continuous–time linear systems.Systems Control Lett. 28 (1996), 95–102 Zbl 0877.93109, MR 1404252, 10.1016/0167-6911(96)00013-8
Reference: [5] Brayton R. K., Tong C. H.: Constructive stability and asymptotic stability of dynamical systems.IEEE Trans. Circuits and Systems CAS-27 (1980), 11, 1121–1130 Zbl 0458.93047, MR 0594156, 10.1109/TCS.1980.1084749
Reference: [6] Grumbaum B.: Convex Polytopes.Wiley, New York 1967 MR 0226496
Reference: [7] Gutman P. O., Cwikel M.: Admissible sets and feedback control for discrete–time linear systems with bounded control and states.IEEE Trans. Automat. Control AC-31 (1986), 4, 373–376 MR 0832956, 10.1109/TAC.1986.1104270
Reference: [8] Gutman P. O., Hagander P.: A new design of constrained controllers for linear systems.IEEE Trans. Automat. Control AC-30 (1985), 22–33 Zbl 0553.93052, MR 0777074, 10.1109/TAC.1985.1103785
Reference: [9] Fuller A. T.: In–the–large stability of relay and saturating control systems with linear controllers.Internat. J. Control 10 (1969), 457–480 Zbl 0176.39302, MR 0258494, 10.1080/00207176908905846
Reference: [10] Sussman H. J., Sontag E. D., Yang Y.: A general result on the stabilization of linear systems using bounded controls.IEEE Trans. Automat. Control AC-39 (1994), 12, 2411–2425 MR 1337566, 10.1109/9.362853
Reference: [11] Sznaier M.: A set–induced norm approach to the robust control of constrained linear systems.SIAM J. Control Optim. 31 (1993), 3, 733–746 MR 1214762, 10.1137/0331033
Reference: [12] Tan K., Gilbert E.: Linear systems with state and control constraints: the theory and the applications of the maximal output admissible sets.IEEE Trans. Automat. Control AC-36 (1991), 9, 1008–1020 MR 1122477
Reference: [13] Tarbouriech S., Burgat C.: Positively invariant sets for constrained continuous–time systems with cone properties.IEEE Trans. Automat. Control 39 (1994), 401–405 Zbl 0800.93778, MR 1265431, 10.1109/9.272344
Reference: [14] Utkin I.: Sliding Modes and Their Applications in Variable Structure Systems.Mir Publisher, Moscow 1974
Reference: [15] Vassilaki M., Bitsoris G.: Constrained regulation of linear continuous–time dynamical systems.Systems Control Lett. 13 (1989), 247–252 Zbl 0685.93056, MR 1017239, 10.1016/0167-6911(89)90071-6
.

Files

Files Size Format View
Kybernetika_35-1999-1_9.pdf 1.685Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo