Previous |  Up |  Next

Article

Title: A conservative spectral element method for the approximation of compressible fluid flow (English)
Author: Black, Kelly
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 1
Year: 1999
Pages: [133]-146
Summary lang: English
.
Category: math
.
Summary: A method to approximate the Euler equations is presented. The method is a multi-domain approximation, and a variational form of the Euler equations is found by making use of the divergence theorem. The method is similar to that of the Discontinuous-Galerkin method of Cockburn and Shu, but the implementation is constructed through a spectral, multi-domain approach. The method is introduced and is shown to be a conservative scheme. A numerical example is given for the expanding flow around a point source as a comparison with the method proposed by Kopriva. (English)
Keyword: spectral element method
Keyword: Euler equation
Keyword: multi-domain approach
MSC: 65M70
MSC: 76M22
MSC: 76M25
MSC: 76N10
idZBL: Zbl 1274.76271
idMR: MR1705536
.
Date available: 2009-09-24T19:24:01Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135273
.
Reference: [1] Bassi F., Rebay S.: A high–order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations.J. Comput. Phys. 131 (1997), 267–279, 1997 Zbl 0871.76040, MR 1433934, 10.1006/jcph.1996.5572
Reference: [2] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws II: General framework.Math. Comp. 52 (1989) MR 0983311
Reference: [3] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws III: One dimensional systems.J. Comput. Phys. 84 (1989), 90 MR 1015355, 10.1016/0021-9991(89)90183-6
Reference: [4] Cockburn B., Shu C. W.: TVB Runga–Kutta local projection discontinuous Galerkin finite–element method for conservation laws IV: The multidimensional case.Math. Comp. 54 (1990) MR 1010597
Reference: [5] Courant R., Friedrichs K. O.: Supersonic Flow and Shock Waves.Applied Mathematical Sciences. Springer–Verlag, New York 1948 Zbl 0365.76001, MR 0029615
Reference: [6] Gordon W. J., Hall C. A.: Transfinite element methods: Blending–function interpolation over arbitrary curved element domains.Numer. Math. 21 (1973), 109–129 Zbl 0254.65072, MR 0381234, 10.1007/BF01436298
Reference: [7] Harten A., Lax P. D., Leer B. Van: On upstream differencing and Godunov–type schemes for hyperbolic conservation laws.SIAM Review 25 (1983), 1, 35–61 MR 0693713, 10.1137/1025002
Reference: [8] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations II: One dimensional domain decomposition schemes, to appea.
Reference: [9] Hesthaven J. S.: A stable penalty method for the compressible Navier–Stokes equations III: Multi dimensional domain decomposition schemes, to appea.
Reference: [10] Hesthaven J. S., Gottlieb D.: A stable penalty method for the compressible Navier–Stokes equations.I. Open boundary conditions. SIAM J. Sci. Statist. Comput 17 (1996), 3, 579–612 Zbl 0853.76061, MR 1384253, 10.1137/S1064827594268488
Reference: [11] Kopriva D. A.: A Conservative Staggered Grid Chebychev Multi–Domain Method for Compressible Flows.II: A Semi–Structured Method. NASA Contractor Report ICASE Report No. 96-15, ICASE, NASA Langley Research Center, 1996
Reference: [12] Kopriva D. A., Kolias J. H.: A conservative staggered grid Chebychev multi–domain method for compressible flows.J. Comput. Phys. 125 (1996), 1, 244–261 MR 1381812, 10.1006/jcph.1996.0091
Reference: [13] Rumsey C., Leer B. van, Roe P. L.: A multidimensional flux function with applications to the Euler and Navier–Stokes equations.J. Comput. Phys. 105 (1993), 306–323 MR 1210411, 10.1006/jcph.1993.1077
.

Files

Files Size Format View
Kybernetika_35-1999-1_12.pdf 2.237Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo