Previous |  Up |  Next

Article

Title: Proto-metrizable fuzzy topological spaces (English)
Author: Lupiañez, Francisco Gallego
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 2
Year: 1999
Pages: [209]-213
Summary lang: English
.
Category: math
.
Summary: In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces. (English)
Keyword: fuzzy topological space
Keyword: proto-metrizable topological space
MSC: 03E72
MSC: 54A40
MSC: 54E35
idZBL: Zbl 1274.54036
idMR: MR1690946
.
Date available: 2009-09-24T19:24:55Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135281
.
Reference: [1] Ajmal N., Kohli J. K.: Connectedness in fuzzy topological spaces.Fuzzy Sets and Systems 31 (1989), 369–388 Zbl 0684.54004, MR 1009267, 10.1016/0165-0114(89)90207-8
Reference: [2] Bülbül A., Warner M. W.: On the goodness of some types of fuzzy paracompactness.Fuzzy Sets and Systems 55 (1993), 187–191 Zbl 0809.54007, MR 1215139, 10.1016/0165-0114(93)90131-Z
Reference: [3] Eklund P., Gähler W.: Basic notions for fuzzy topology I.Fuzzy Sets and Systems 26 (1988), 333–356 Zbl 0645.54008, MR 0942329
Reference: [4] El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M.: Good extensions of paracompactness.Math. Japon. 37 (1992), 195–200 Zbl 0772.54007, MR 1148533
Reference: [5] Fuller L. B.: Trees and proto–metrizable spaces.Pacific J. Math. 104 (1983), 55–75 Zbl 0386.54020, MR 0683728, 10.2140/pjm.1983.104.55
Reference: [6] Gruenhage G., Zenor P.: Proto metrizable spaces.Houston J. Math. 3 (1977), 47–53 Zbl 0346.54012, MR 0442895
Reference: [7] Lowen R.: A comparison of different compactness notions in fuzzy topological spaces.J. Math. Anal. Appl. 64 (1978), 446–454 Zbl 0381.54004, MR 0497443, 10.1016/0022-247X(78)90052-5
Reference: [8] Luo M.-K.: Paracompactness in fuzzy topological spaces.J. Math. Anal. Appl. 130 (1988), 55–77 Zbl 0642.54006, MR 0926828, 10.1016/0022-247X(88)90386-1
Reference: [9] Lupiáñez F. G.: Non–archimedean fuzzy topological spaces.J. Fuzzy Math. 4 (1996), 559–565 Zbl 0943.54007, MR 1410629
Reference: [10] Martin H. W.: Weakly induced fuzzy topological spaces.J. Math. Anal. Appl. 78 (1980), 634–639 Zbl 0463.54007, MR 0601558, 10.1016/0022-247X(80)90170-5
Reference: [11] Nyikos P.: Some surprising base properties in Topology, Studies in topology.In: Proc. Conf. Univ. North Carolina, Charlotte, NC 1974, Academic Press, New York 1975, pp. 427–450 MR 0367940
Reference: [12] Nyikos P.: Some surprising base properties in Topology II.In: Set–theoretic Topology, Inst. Medicine and Mathematics, Ohio Univ., Academic Press, New York 1977, pp. 277–305 Zbl 0397.54004, MR 0442889
.

Files

Files Size Format View
Kybernetika_35-1999-2_5.pdf 678.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo