Previous |  Up |  Next

Article

Title: Inference about stationary distributions of Markov chains based on divergences with observed frequencies (English)
Author: Menéndez, María Luisa
Author: Morales, Domingo
Author: Pardo, Leandro
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 3
Year: 1999
Pages: [265]-280
Summary lang: English
.
Category: math
.
Summary: For data generated by stationary Markov chains there are considered estimates of chain parameters minimizing $\phi $–divergences between theoretical and empirical distributions of states. Consistency and asymptotic normality are established and the asymptotic covariance matrices are evaluated. Testing of hypotheses about the stationary distributions based on $\phi $–divergences between the estimated and empirical distributions is considered as well. Asymptotic distributions of $\phi $–divergence test statistics are found, enabling to specify asymptotically $\alpha $-level tests. (English)
Keyword: $\phi$-divergence
Keyword: empirical distributions
Keyword: parameter estimation
Keyword: hypotheses testing
MSC: 62E20
MSC: 62M02
MSC: 62M05
idZBL: Zbl 1274.62548
idMR: MR1704667
.
Date available: 2009-09-24T19:25:47Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135288
.
Reference: [1] Billingsley P.: Statistical methods in Markov chains.Ann. Math. Statist. 32 (1961), 12–40 Zbl 0104.12802, MR 0123420, 10.1214/aoms/1177705136
Reference: [2] Birch M. W.: A new proof of the Pearson–Fisher Theorem.Ann. Math. Statist. 35 (1964), 817–824 Zbl 0259.62017, MR 0169324, 10.1214/aoms/1177703581
Reference: [3] Bishop Y. M. M., Fienberg S. E., Holland P. W.: Discrete Multivariate Analysis.Theory and Practice. The MIT Press, Cambridge, Massachusetts 1975 Zbl 1131.62043, MR 0381130
Reference: [4] Cressie N., Read T. R. C.: Multinomial goodness of fit tests.J. Royal Statist. Soc., Ser. B 46 (1984), 440–464 Zbl 0571.62017, MR 0790631
Reference: [5] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit.J. Amer. Statist. Assoc. 84 (1989), 130–141 Zbl 0683.62027, MR 0999671, 10.1080/01621459.1989.10478748
Reference: [6] Glesser L. J., Moore D. S.: The effect of dependence on chi–squared and empiric distribution tests of fit.Ann. Statist. 11 (1983), 1100-1108 MR 0720256
Reference: [7] Glesser L. J., Moore D. S.: The effect of positive dependence on chi–squared tests for categorical data.J. Royal Statis. Soc., Ser. B 47 (1983), 459–465 MR 0844476
Reference: [8] Liese F., Vajda I.: Convex Statistical Distances.Teubner, Leipzig 1987 Zbl 0656.62004, MR 0926905
Reference: [9] Menéndez M. L., Morales D., Pardo L., Vajda I.: Divergence–based estimation and testing of statistical models of classification.J. Multivariate Anal. 54 (1996), 329–354 MR 1345543, 10.1006/jmva.1995.1060
Reference: [10] Menéndez M. L., Morales D., Pardo L., Vajda I.: Testing in stationary models based on $f$–divergences of observed and theoretical frequencies.Kybernetika 33 (1997), 465–475 MR 1603997
Reference: [11] Moore D. S.: The effect of dependence on chi–squared tests of fit.Ann. Statist. 10 (1982), 1163–1171 Zbl 0507.62045, MR 0673651, 10.1214/aos/1176345981
Reference: [12] Morales D., Pardo L., Vajda I.: Asymptotic divergence of estimates of discrete distributions.J. Statist. Plann. Inference 48 (1995), 347–369 Zbl 0839.62004, MR 1368984, 10.1016/0378-3758(95)00013-Y
Reference: [13] Read T. R. C., Cressie N. A. C.: Goodness–of–Fit Statistics for Discrete Multivariate Data.Springer, Berlin 1988 Zbl 0663.62065, MR 0955054
Reference: [14] Salicrú M., Morales D., Menéndez M. L., Pardo L.: On the applications of divergence type measures in testing statistical hypotheses.J. Multivariate Anal. 51 (1994), 372–391 Zbl 0815.62003, 10.1006/jmva.1994.1068
Reference: [15] Tavaré S., Altham P. M. E.: Serial dependence of observations leading to contingency tables, and corrections to chi–squared statistics.Biometrika 70 (1983), 139–144 Zbl 0502.62043, MR 0742983, 10.1093/biomet/70.1.139
.

Files

Files Size Format View
Kybernetika_35-1999-3_1.pdf 1.829Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo