Previous |  Up |  Next

Article

Title: Design of predictive LQ controller (English)
Author: Fikar, Miroslav
Author: Engell, Sebastian
Author: Dostál, Petr
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 35
Issue: 4
Year: 1999
Pages: [459]-472
Summary lang: English
.
Category: math
.
Summary: A single variable controller is developed in the predictive control framework based upon minimisation of the LQ criterion with infinite output and control horizons. The infinite version of the predictive cost function results in better stability properties of the controller and still enables to incorporate constraints into the control design. The constrained controller consists of two parts: time-invariant nominal LQ controller and time-variant part given by Youla–Kučera parametrisation of all stabilising controllers. (English)
Keyword: predictive control
Keyword: LQ controller
Keyword: discrete-time control system
Keyword: control design
Keyword: Youla-Kucera parametrization
MSC: 49N10
MSC: 93B40
MSC: 93B51
MSC: 93C55
idZBL: Zbl 1274.93089
idMR: MR1723589
.
Date available: 2009-09-24T19:27:16Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135301
.
Reference: [1] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control.Part I. The basic algorithm. Automatica 23 (1987), 2, 137–148 Zbl 0621.93033, 10.1016/0005-1098(87)90087-2
Reference: [2] Clarke D. W., Mohtadi, C., Tuffs P. S.: Generalized predictive control.Part II: Extensions and interpretations. Automatica 23 (1987), 2, 149–160 Zbl 0621.93033, 10.1016/0005-1098(87)90088-4
Reference: [3] Clarke D. W., Scattolini R.: Constrained receding–horizon predictive control.IEE Proc. D 138 (1991), 4, 347–354 Zbl 0743.93063, 10.1049/ip-d.1991.0047
Reference: [4] Fikar M., Engell S.: Receding horizon predictive control based upon Youla – Kučera parametrization.European J. Control 3 (1997), 4, 304–316 10.1016/S0947-3580(97)70088-8
Reference: [5] Horn R. A., Johnson C. R.: Matrix Analysis.Cambridge University Press 1985 Zbl 0801.15001, MR 0832183
Reference: [6] Hunt K. J., Šebek M.: Implied polynomial matrix equations in multivariable stochastic optimal control.Automatica 27 (1991), 2, 395–398 Zbl 0729.93083, MR 1095430, 10.1016/0005-1098(91)90088-J
Reference: [7] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach.Wiley, Chichester 1979 Zbl 0432.93001, MR 0573447
Reference: [8] Kučera V.: Analysis and Design of Discrete Linear Control Systems.Prentice Hall, Englewood Cliffs, N. J. 1991 Zbl 0762.93060, MR 1182311
Reference: [9] McIntosh A. R., Shah S. L., Fisher D. G.: Analysis and tuning of adaptive generalized predictive control.Canad. J. Chem. Engrg. 69 (1991), 97–110 10.1002/cjce.5450690112
Reference: [10] Middleton R., Goodwin G. C.: Digital Control and Estimation.A Unified Approach. Prentice Hall, Englewood Cliffs, N. J. 1990 Zbl 0754.93053
Reference: [11] Mosca E., Zhang J.: Stable redesign of predictive control.Automatica 28 (1992), 1229–1233 Zbl 0775.93056, MR 1196787, 10.1016/0005-1098(92)90065-N
Reference: [12] Rawlings J. B., Muske K. R.: The stability of constrained receding horizon control.IEEE Trans. Automat. Control 38 (1993), 10, 1512–1516 Zbl 0790.93019, MR 1242898, 10.1109/9.241565
Reference: [13] Rossiter J. A., Gossner J. R., Kouvaritakis B.: Infinite horizon stable predictive control.IEEE Trans. Automat. Control 41 (1996), 10, 1522–1527 Zbl 0863.93037, MR 1413388, 10.1109/9.539437
Reference: [14] Rossiter J. A., Kouvaritakis B.: Constrained stable generalised predictive control.IEE Proc. D 140 (1993), 4, 243–254 Zbl 0786.93005
Reference: [15] Rossiter J. A., Kouvaritakis, B., Gossner J. R.: Feasibility and stability results for constrained stable predictive control.Automatica 31 (1995), 3, 863–877 MR 1337335, 10.1016/0005-1098(94)00166-G
Reference: [16] Scokaert P. O. M., Clarke D. W.: Stabilizing properties of constrained predictive control.IEE Proc. – Control Theory Appl. 141 (1994), 5, 295–304
Reference: [17] Scokaert P. O. M., Rawlings J. B.: Infinite horizon linear quadratic control with constraints.In: 13th Triennal World Congress IFAC, San Francisco 1996, Volume M, pp. 109–114
Reference: [18] Šebek M.: Direct polynomial approach to discrete–time stochastic tracking.Problems Control Inform. Theory 12 (1983), 293–302 Zbl 0517.93067, MR 0729282
Reference: [19] Zafiriou E., Chiou H. W.: On the dynamic resiliency of constrained processes.Comput. Chem. Engrg. 20 (1996), 4, 347–355 10.1016/0098-1354(95)00038-0
Reference: [20] Zheng A., Morari M.: Stability of model predictive control with mixed constraints.IEEE Trans. Automat. Control 40 (1995), 10, 1818–1823 Zbl 0846.93075, MR 1354529, 10.1109/9.467664
.

Files

Files Size Format View
Kybernetika_35-1999-4_5.pdf 1.518Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo