Previous |  Up |  Next

Article

Title: On generalized Popov theory for delay systems (English)
Author: Niculescu, S. I.
Author: Ionescu, V.
Author: Ivănescu, D.
Author: Dugard, L.
Author: Dion, J.-M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 1
Year: 2000
Pages: [2]-20
Summary lang: English
.
Category: math
.
Summary: This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98]. (English)
Keyword: Popov generalized theory
Keyword: delay system
Keyword: memoryless state feedback control
MSC: 93B36
MSC: 93B52
MSC: 93C05
MSC: 93C23
MSC: 93D05
MSC: 93D10
MSC: 93D15
idZBL: Zbl 1249.93141
idMR: MR1760884
.
Date available: 2009-09-24T19:30:29Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135330
.
Reference: [1] Boyd S., Ghaoui L. El, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory.(SIAM Stud. Appl. Math. 15.) SIAM Publication, Philadelphia 1994 Zbl 0816.93004, MR 1284712
Reference: [2] Dugard L., (eds.) E. I. Verriest: Stability and Control of Time–delay Systems.(Lecture Notes in Control and Inform. Sciences 228.) Springer–Verlag, London 1997 Zbl 0901.00019, MR 1482570
Reference: [3] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_\infty $ control problems.IEEE Trans. Automat. Control 34 (1989), 831–847 MR 1004301, 10.1109/9.29425
Reference: [4] Halanay A., Ionescu V.: Generalized discrete–time Popov–Yakubovich theory.Systems Control Lett. 20 (1993), 1–6 Zbl 0778.93097, MR 1198466, 10.1016/0167-6911(93)90080-P
Reference: [5] Halanay A., Ionescu V.: Time–Varying Discrete Linear Systems.Birkhäuser, Basel 1994 Zbl 0799.93035, MR 1269542
Reference: [6] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl.Math. Sciences 99.), Springer–Verlag, Berlin 1991
Reference: [7] Ionescu V., Weiss M.: Continuous and discrete-time Riccati theory: a Popov function approach.Linear Algebra Appl. 193 (1993), 173–209 MR 1240278
Reference: [8] Ionescu V., Oară C., Weiss M.: Generalized Riccati Theory.Wiley, New York 1998 Zbl 0915.34024
Reference: [9] Ionescu V., Niculescu S. I., Woerdeman H.: On ${\mathcal L}_2$ memoryless control of time–delay systems.In: Proc. 36th IEEE Conf. Decision Control, San Diego 1997
Reference: [10] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems.In: Proc. 4th IFAC Conf. System Structure and Control, Nantes 1998 Zbl 0965.93083
Reference: [11] Ionescu V., Niculescu S. I., Dion J. M., Dugard L., Li H.: Generalized Popov theory applied to state–delayed systems.In: Proc. 4th IFAC Conf. System Structure Control, Nantes 1998 Zbl 0965.93083
Reference: [12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations.Kluwer, Dordrecht 1992 MR 1256486
Reference: [13] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations.Math. Science Engrg. 180, Academic Press, New York 1986 Zbl 0593.34070, MR 0860947
Reference: [14] Kolmanovskii V. B., Richard J. P.: Stability of some systems with distributed delays.European J. Automat. Control 31 (1997), 971–982
Reference: [15] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Stability of linear systems with discrete–plus–distributed delays: Application to some model transformations.In: Mathematical Theory of Networks and Systems (MTNS’98), Padova 1998
Reference: [16] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $H_\infty $ controllers for state delayed systems.IEEE Trans. Automat. Control 39 (1994), 159–162 MR 1258692, 10.1109/9.273356
Reference: [17] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach.Part I. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
Reference: [18] Li H., Niculescu S. I., Dugard L., Dion J. M.: Robust ${\mathcal H}_\infty $ control for uncertain linear time–delay systems: A linear matrix inequality approach with guaranteed $\alpha $-stability.Part II. In: Proc. 35th IEEE Conf. Decision Control, Kobe 1996
Reference: [19] Niculescu S. I.: ${\mathcal H}_\infty $ memoryless control with an $\alpha $-stability constraint for time–delay systems: An LMI approach.IEEE Trans. Automat. Control 43 (1998), 739–743 MR 1618043, 10.1109/9.668850
Reference: [20] Niculescu S. I.: Time–delay systems.Qualitative aspects on stability and stabilization (in French), Diderot Eds., ‘Nouveaux Essais’ Series, Paris 1997 Zbl 1235.93006
Reference: [21] Niculescu S. I., Ionescu V.: On delay–independent stability criteria: A matrix pencil approach.IMA J. Math. Control Inform. 1997 Zbl 0886.93056, MR 1467584
Reference: [22] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust ${\mathcal H}_\infty $ memoryless control for uncertain linear systems with time–varying delay.In: 3rd European Control Conf., Rome 1995, pp. 1814–1818
Reference: [23] Niculescu S. I., Ionescu V., Woerdeman H.: On the Popov theory for some classes of time-delay systems: A matrix pencil approach.In: MTNS’98, Padova 1998
Reference: [24] Niculescu S. I., Verriest E. I., Dugard L., Dion J. M.: Stability and robust stability of time–delay systems: A guided tour.In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Inform. Sciences 228). Springer–Verlag, London 1997, pp. 1–71 MR 1482571
Reference: [25] Noldus E.: Stabilization of a class of distributional convolution equations.Internat. J. Control 41 (1985), 947–960 Zbl 0566.93048, MR 0792919, 10.1080/0020718508961174
Reference: [26] Oară C.: Proper deflating subspaces: properties, algorithmes and applications.Numer. Algorithms 7 (1994), 355–377 MR 1283105, 10.1007/BF02140690
Reference: [28] Răsvan V.: Absolute Stability of Time–Delay Control Systems (in Russian).Nauka, Moscow 1983
Reference: [29] Richard J.-P.: Some trends and tools for the study of time delay systems.In: CESA’98 IMACS–IEEE Multiconference, Hammamet 1998, pp. 27–43
Reference: [30] Xie L., Souza C. E. de: Robust stabilization and disturbance attenuation for uncertain delay system.In: Proc. 2nd European Control Conf., Groningen 1993, pp. 667–672
.

Files

Files Size Format View
Kybernetika_36-2000-1_2.pdf 2.752Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo