Previous |  Up |  Next

Article

Title: Input-output decoupling of nonlinear recursive systems (English)
Author: Kotta, Ülle
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 1
Year: 2000
Pages: [43]-51
Summary lang: English
.
Category: math
.
Summary: The input-output decoupling problem is studied for a class of recursive nonlinear systems (RNSs), i. e. for systems, modelled by higher order nonlinear difference equations, relating the input, the output and a finite number of their time shifts. The solution of the problem via regular static feedback known for discrete-time nonlinear systems in state space form, is extended to RNSs. Necessary and sufficient conditions for local solvability of the problem are proposed. This is the alternative to be used when some nonlinear input-outpt models cannot be realized in the state-space form. (English)
Keyword: input-output decoupling problem
Keyword: nonlinear input-output model
MSC: 93B15
MSC: 93B25
MSC: 93C10
MSC: 93C55
idZBL: Zbl 1249.93037
idMR: MR1760887
.
Date available: 2009-09-24T19:30:51Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135333
.
Reference: [1] Bastin G., Jarachi F., Mareels I. M. Y.: Dead beat control of recursive nonlinear systems.In: Proc. of the 32nd Conference on Decision and Control, San Antonio 1993, pp. 2965–2971
Reference: [2] Chen S., Billings S. A.: Representation of non–linear systems: the NARMAX model.Internat. J. Control 49 (1989), 1013–1032 MR 0990327, 10.1080/00207178908559683
Reference: [3] Fliess M.: Automatique en temps discret et algèbre aux différences.Forum Math. 2 (1990), 213–232 Zbl 0706.93039, MR 1050406, 10.1515/form.1990.2.213
Reference: [4] Hammer J.: Nonlinear systems: stability and rationality.Internat. J. Control 40 (1984), 1–35 MR 0750409, 10.1080/00207178408933254
Reference: [5] Isidori A.: Nonlinear Control Systems.Second edition. Springer–Verlag, Berlin 1989 Zbl 0931.93005, MR 1015932
Reference: [6] Kotta Ü.: Inversion Method in the Discrete–time Nonlinear Control Systems Synthesis Problems.Springer–Verlag, London 1995 Zbl 0822.93001, MR 1338376
Reference: [7] Kotta Ü.: On right invertibility of recursive nonlinear systems.In: Proc. of the 13th IFAC World Congress, San Fransisco 1996 MR 1430762
Reference: [8] Kotta Ü.: Model matching problem for nonlinear recursive systems.Proc. Estonian Acad. Sci. Phys. Math. 46 (1997), 251–261 Zbl 0911.93013, MR 1487063
Reference: [9] Kotta Ü., Liu P., Zinober A. S. I.: State-space realization of input–output nonlinear difference equations.In: Proc. of European Control Conference, Brussels 1997, Paper N 851 (CD–ROM)
Reference: [10] Levin A. U., Narendra K. S.: Recursive identification using feedforward neural networks.Internat. J. Control 61 (1995), 533–547 Zbl 0830.93017, MR 1617011, 10.1080/00207179508921916
Reference: [11] Levin A. U., Narendra K. S.: Control of nonlinear dynamical systems using neural networks.Part 2: Observabiliy, identification, and control. IEEE Trans. Neural Networks 7 (1996), 30–42 10.1109/72.478390
Reference: [12] Narendra K. S., Cabrera J. B. D.: Input–output representation of discrete–time dynamical systems – nonlinear ARMA models.In: Proc. of the 33rd Conference on Decision and Control, 1994, pp. 1118–1119
Reference: [13] Nijmeijer H., Schaft A. J. van der: Nonlinear Dynamical Control Systems.Springer–Verlag, New York 1990 MR 1047663
.

Files

Files Size Format View
Kybernetika_36-2000-1_5.pdf 1.370Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo