Previous |  Up |  Next

Article

Title: Optimal resource allocation in a large scale system under soft constraints (English)
Author: Duda, Zdzisław
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 3
Year: 2000
Pages: [351]-362
Summary lang: English
.
Category: math
.
Summary: In the paper there is discussed a problem of the resource allocation in a large scale system in the presence of the resource shortages. The control task is devided into two levels, with the coordinator on the upper level and local controllers on the lower one. It is assumed that they have different information. The coordinator has an information on mean values of users demands, an inflow forecast and an estimation of the resource amount in a storage reservoir. On the basis on this information it determines (by a numerical way) values of a coordinating variable transmitted to the local controllers. The $i$th local controller receives the measurement of the $i$th user demand and the value of the coordinating variable from the coordinator. On the basis on this information it calculates the decision on the resource allocation. For a coordination an isoperimetric constraint is proposed. Due to this, the lower level optimization problem consists in independent local tasks which depend on the coordinating variable. In the paper two strategies of the coordinator are proposed. The first algorithm is based on the open-loop feedback strategy, while the second one takes into account probabilistic constraints on the aggregate variable and on the amount of the resource in a storage reservoir. For static, scalar subsystems and a quadratic performance index some properties of an obtained solution are discussed. (English)
Keyword: large scale systems
Keyword: soft constraint
Keyword: local controller
Keyword: isoperimetric constraint
MSC: 49N10
MSC: 93A13
MSC: 93A15
idZBL: Zbl 1249.93003
idMR: MR1773509
.
Date available: 2009-09-24T19:33:25Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135355
.
Reference: [1] Aoki M.: On decentralized linear stochastic control problems with quadratic cost.IEEE Trans. Automat Control 18 (1973), 243–250 Zbl 0266.93067, MR 0441519, 10.1109/TAC.1973.1100289
Reference: [2] Chong C. Y., Athans M.: On the stochastic control of linear systems with different information sets.IEEE Trans. Automat. Control 16 (1971), 423–430 MR 0292570, 10.1109/TAC.1971.1099810
Reference: [3] Findeisen W.: Multilevel Control Systems (in Polish).PWN 1974
Reference: [4] Gessing R., Duda Z.: Price co–ordination for a resource allocation problem in a large–scale system.Internat. J. Systems Sci. 26 (1995), 2245–2253 Zbl 0842.93007, MR 1389363, 10.1080/00207729508928573
Reference: [5] Geromel J. C., Filho O. S. Silva: Partial closed–loop structure for linear stochastic systems.IEEE Trans. Automat. Control 34 (1988), 243–246 10.1109/9.21112
Reference: [6] Ho Y. C.: Team decision theory and information structures.Proc. IEE 68 (1980), 644–654
Reference: [7] Jamshidi M.: Large Scale Systems, Modelling and Control.North Holland, New York 1983
Reference: [8] Lasdon L. S.: Optimization Theory for Large Systems.MacMilan, New York 1970 Zbl 0991.90001, MR 0337317
Reference: [9] Medith J. S.: Stochastic Optimal Linear Estimation and Control.McGraw–Hill 1969
Reference: [10] Mesarovic M. D., Macko D., Takahara Y.: Theory of Hierarchical, Multilevel Systems.Academic Press, New York 1970 Zbl 0253.93001, MR 0307742
Reference: [11] Pearson J. D.: Dynamic decomposition techniques.In: Optimization Methods for Large–Scale Systems. McGraw–Hill, New York 1971
Reference: [12] Radner R.: Team decision problems.Ann. Math. Statist. 33 (1962), 857–881 Zbl 0217.57103, MR 0146937, 10.1214/aoms/1177704455
Reference: [13] Roberts P. D.: An algorithm for steady–state system optimisation and parameter estimation.Internat. J. Systems Sci. 10 (1979), 719–734 MR 0543242, 10.1080/00207727908941614
Reference: [14] Sandell N. R., Athans M.: Solutions of some non–classical stochastic decision problems.IEEE Trans. Automat. Control 19 (1974), 109–116 MR 0456796, 10.1109/TAC.1974.1100498
Reference: [15] Wismer D. A.: Optimization Methods for Large Scale Systems with Applications.McGraw–Hill, New York 1971 Zbl 0256.90003
Reference: [16] Witsenhausen H. S.: A counterexample in stochastic optimum control.SIAM J. Control 6 (1978), 131–147 MR 0231649, 10.1137/0306011
Reference: [17] Witsenhausen H. S.: Separation of estimation and control for discrete–time systems.Proc. IEEE 9 (1971), 1557–1566 MR 0424374
.

Files

Files Size Format View
Kybernetika_36-2000-3_6.pdf 1.280Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo