Title:
|
Transfer function computation for 3-D discrete systems (English) |
Author:
|
Antoniou, George E. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
36 |
Issue:
|
5 |
Year:
|
2000 |
Pages:
|
[539]-547 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer. (English) |
Keyword:
|
3-D discrete system |
Keyword:
|
discrete Fourier transform |
MSC:
|
65T50 |
MSC:
|
93B40 |
MSC:
|
93C80 |
idZBL:
|
Zbl 1249.93067 |
idMR:
|
MR1882793 |
. |
Date available:
|
2009-09-24T19:35:03Z |
Last updated:
|
2015-03-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135370 |
. |
Reference:
|
[1] Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A.: Transfer function determination of singular systems using the DFT.IEEE Trans. Circuits and Systems CAS-36 (1989), 1140–1142 MR 1003246, 10.1109/31.192429 |
Reference:
|
[2] Bose N. K.: Applied Multidimensional Systems.Van Nostrand, Reinhold, 1982 Zbl 0574.93031, MR 0652483 |
Reference:
|
[3] Fornasini E., Marchesini E.: Doubly indexed dynamical systems: state space models and structural properties.Math. Systems Theory 12 (1978), 1, 59–72 Zbl 0392.93034, MR 0510621, 10.1007/BF01776566 |
Reference:
|
[4] Galkowski K.: State Space Realizations on $n$-D Systems.Monograph No. 76, Wroclaw Technical University, Wroclaw 1994 |
Reference:
|
[5] Kaczorek T.: Two dimensional linear systems.(Lecture Notes in Control and Informations Sciences 68.) Springer–Verlag, Berlin 1985 Zbl 0904.00029, MR 0870854 |
Reference:
|
[7] Luo H., Lu W.-S., Antoniou A.: New algorithms for the derivation of the transfer-function matrices of 2-D state-space discrete systems.I: Fundamental theory and applications. IEEE Trans. Circuits and Systems CAS-44 (1997), 2, 112–119 Zbl 0873.93006 |
Reference:
|
[8] Oppenheim A. V., Scheafer R. W.: Digital Signal Processing.Prentice–Hall, Englewood Cliffs, N. J. 1975 |
Reference:
|
[9] al L. E. Paccagnella et: FFT calculation of a determinental polynomial.IEEE Trans. Automat. Control AC-21 (1976), 401 10.1109/TAC.1976.1101226 |
Reference:
|
[10] Paraskevopoulos P. N., Varoufakis S. J., Antoniou G. E.: Minimal state space realization of 3–D systems.IEE Proceedings Part G 135 (1988), 65–70 |
Reference:
|
[11] Yeung K. S., Kumbi F.: Symbolic matrix inversion with application to electronic circuits.IEEE Trans. Circuits and Systems CAS-35 (1988), 2, 235–239 Zbl 0643.65013, 10.1109/31.1727 |
. |