Title:
|
Solution set in a special case of generalized Nash equilibrium games (English) |
Author:
|
Cach, Josef |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
37 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
[21]-37 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem. (English) |
Keyword:
|
generalized Nash equilibrium problem |
Keyword:
|
Cournot oligopoly problem |
MSC:
|
49J40 |
MSC:
|
90C30 |
MSC:
|
90C46 |
MSC:
|
91A10 |
idZBL:
|
Zbl 1265.91007 |
idMR:
|
MR1825755 |
. |
Date available:
|
2009-09-24T19:36:48Z |
Last updated:
|
2015-03-26 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/135386 |
. |
Reference:
|
[1] Arrow K., Debreu G.: Existence of equilibrium for competitive economy.Econometrica 22 (1954), 265–290 MR 0077069, 10.2307/1907353 |
Reference:
|
[2] Baiocchi C., Capelo A.: Variational and Quasi-Variational Inequalities.Wiley, New York 1984 MR 0745619 |
Reference:
|
[3] Cach J.: A Nonsmooth Approach to the Computation of Equilibria (in Czech).Diploma Thesis, Charles University, Prague 1996 |
Reference:
|
[4] Chan D., Pang J.-S.: The generalized quasi-variational problem.Math. Oper. Res. 7 (1982), 211–222 MR 0665558, 10.1287/moor.7.2.211 |
Reference:
|
[5] Debreu G.: A social equilibrium existence theorem.Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886–893 Zbl 0047.38804, MR 0050251, 10.1073/pnas.38.10.886 |
Reference:
|
[6] Harker P. T.: A variational inequality approach for the determination of oligopolistic market equilibrium.Math. Programming 30 (1984), 105–111 Zbl 0559.90015, MR 0755118, 10.1007/BF02591802 |
Reference:
|
[7] Harker P. T.: Generalized Nash games and quasi-variational inequalities.European J. Oper. Res. 54 (1991), 81–94 Zbl 0754.90070, 10.1016/0377-2217(91)90325-P |
Reference:
|
[8] Harker P. T., Pang J.-S.: Finite-dimensional variational inequalities and complementarity problems: a survey of theory, algorithms and applications.Math. Programming 60 (1990), 161–220 MR 1073707, 10.1007/BF01582255 |
Reference:
|
[9] Ichiishi T.: Game Theory for Economic Analysis.Academic Press, New York 1983 Zbl 0522.90104, MR 0700688 |
Reference:
|
[10] Mosco V.: Implicit variational problems and quasi-variational inequalities.In: Nonlinear Operations and the Calculus of Variations – Summer School held in Bruxelles on 8–19 September 1975 (J. P. Gossez et al, ed., Lecture Notes in Mathematics 543.) Springer Verlag, Berlin 1976, pp. 83–156 MR 0513202 |
Reference:
|
[11] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium.Math. Programming 24 (1982), 92–106 Zbl 0486.90015, MR 0667941, 10.1007/BF01585096 |
Reference:
|
[12] Nash J.: Non-cooperative games.Ann. of Math. 54 (1951), 286–295 Zbl 0045.08202, MR 0043432, 10.2307/1969529 |
Reference:
|
[13] Outrata J. V., Kočvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results.Kluwer, Dordrecht 1998 Zbl 0947.90093, MR 1641213 |
Reference:
|
[14] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints.Math. Programming 68 (1995), 105–130 Zbl 0835.90093, MR 1312107, 10.1007/BF01585759 |
Reference:
|
[15] Rosen J. B.: Existence and uniqueness of equilibrium points for concave n-person games.Econometrica 33 (1965), 520–534 Zbl 0142.17603, MR 0194210, 10.2307/1911749 |
. |