Previous |  Up |  Next

Article

Title: Solution set in a special case of generalized Nash equilibrium games (English)
Author: Cach, Josef
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 1
Year: 2001
Pages: [21]-37
Summary lang: English
.
Category: math
.
Summary: A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem. (English)
Keyword: generalized Nash equilibrium problem
Keyword: Cournot oligopoly problem
MSC: 49J40
MSC: 90C30
MSC: 90C46
MSC: 91A10
idZBL: Zbl 1265.91007
idMR: MR1825755
.
Date available: 2009-09-24T19:36:48Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135386
.
Reference: [1] Arrow K., Debreu G.: Existence of equilibrium for competitive economy.Econometrica 22 (1954), 265–290 MR 0077069, 10.2307/1907353
Reference: [2] Baiocchi C., Capelo A.: Variational and Quasi-Variational Inequalities.Wiley, New York 1984 MR 0745619
Reference: [3] Cach J.: A Nonsmooth Approach to the Computation of Equilibria (in Czech).Diploma Thesis, Charles University, Prague 1996
Reference: [4] Chan D., Pang J.-S.: The generalized quasi-variational problem.Math. Oper. Res. 7 (1982), 211–222 MR 0665558, 10.1287/moor.7.2.211
Reference: [5] Debreu G.: A social equilibrium existence theorem.Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886–893 Zbl 0047.38804, MR 0050251, 10.1073/pnas.38.10.886
Reference: [6] Harker P. T.: A variational inequality approach for the determination of oligopolistic market equilibrium.Math. Programming 30 (1984), 105–111 Zbl 0559.90015, MR 0755118, 10.1007/BF02591802
Reference: [7] Harker P. T.: Generalized Nash games and quasi-variational inequalities.European J. Oper. Res. 54 (1991), 81–94 Zbl 0754.90070, 10.1016/0377-2217(91)90325-P
Reference: [8] Harker P. T., Pang J.-S.: Finite-dimensional variational inequalities and complementarity problems: a survey of theory, algorithms and applications.Math. Programming 60 (1990), 161–220 MR 1073707, 10.1007/BF01582255
Reference: [9] Ichiishi T.: Game Theory for Economic Analysis.Academic Press, New York 1983 Zbl 0522.90104, MR 0700688
Reference: [10] Mosco V.: Implicit variational problems and quasi-variational inequalities.In: Nonlinear Operations and the Calculus of Variations – Summer School held in Bruxelles on 8–19 September 1975 (J. P. Gossez et al, ed., Lecture Notes in Mathematics 543.) Springer Verlag, Berlin 1976, pp. 83–156 MR 0513202
Reference: [11] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium.Math. Programming 24 (1982), 92–106 Zbl 0486.90015, MR 0667941, 10.1007/BF01585096
Reference: [12] Nash J.: Non-cooperative games.Ann. of Math. 54 (1951), 286–295 Zbl 0045.08202, MR 0043432, 10.2307/1969529
Reference: [13] Outrata J. V., Kočvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results.Kluwer, Dordrecht 1998 Zbl 0947.90093, MR 1641213
Reference: [14] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints.Math. Programming 68 (1995), 105–130 Zbl 0835.90093, MR 1312107, 10.1007/BF01585759
Reference: [15] Rosen J. B.: Existence and uniqueness of equilibrium points for concave n-person games.Econometrica 33 (1965), 520–534 Zbl 0142.17603, MR 0194210, 10.2307/1911749
.

Files

Files Size Format View
Kybernetika_37-2001-1_2.pdf 1.827Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo