Previous |  Up |  Next

Article

Title: Trajectory tracking control for nonlinear time-delay systems (English)
Author: Márquez-Martínez, Luis Alejandro
Author: Moog, Claude H.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 4
Year: 2001
Pages: [370]-380
Summary lang: English
.
Category: math
.
Summary: The reference trajectory tracking problem is considered in this paper and (constructive) sufficient conditions are given for the existence of a causal state feedback solution. The main result is introduced as a byproduct of input-output feedback linearization. (English)
Keyword: trajectory tracking problem
Keyword: feedback solution
Keyword: nonlinear time-delay system
MSC: 93B18
MSC: 93B52
MSC: 93C10
MSC: 93C15
MSC: 93C23
MSC: 93D15
idZBL: Zbl 1265.93059
idMR: MR1859092
.
Date available: 2009-09-24T19:40:27Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135417
.
Reference: [1] Antoniades C., Christofides D.: Robust control of nonlinear time-delay systems.Internat. J. Math. Comp. Sci. 9 (1999), 4, 811–837 Zbl 0952.93042, MR 1736672
Reference: [2] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring.SIAM J. Control Optim. 33 (1995), 3, 750–764 Zbl 0831.93011, MR 1327237, 10.1137/S0363012992235638
Reference: [3] Germani A., Manes, C., Pepe P.: Linearization and decoupling of nonlinear delay systems.In: Proc. American Control Conference, Philadelphia 1998, pp. 1948–1952
Reference: [4] Isidori A.: Nonlinear Control Systems.Second edition. Springer–Verlag, Berlin 1989 Zbl 0931.93005, MR 1015932
Reference: [5] Kolmanovskii V. B., Niculescu S. I., Gu K.: Delay effects on stability and control: a survey.In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
Reference: [6] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations.Academic Press, London 1986 Zbl 0593.34070, MR 0860947
Reference: [7] Márquez–Martínez L. A., Moog C. H.: On the input-output linearization of nonlinear time-delay systems.In: Proc. IFAC Conference on System Structure and Control, Nantes 1998
Reference: [8] Moog C. H., Castro–Linares R., Velasco–Villa, M., Márquez–Martínez L. A.: Disturbance decoupling for time-delay nonlinear systems.IEEE Trans. Automat. Control 5 (2000), 305–309 10.1109/9.839954
Reference: [9] Niculescu S. I., Verriest E. I., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour.In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences 228), Springer–Verlag, Berlin 1998 Zbl 0914.93002, MR 1482571
Reference: [10] Šebek M.: Asymptotic tracking for 2-D and delay-differential systems.Automatica 24 (1988), 5, 711–713 Zbl 0655.93035, 10.1016/0005-1098(88)90121-5
Reference: [11] Wu W., Chou Y. S.: Output tracking control of uncertain nonlinear systems with an input time delay.IEE Proc. – Control Theory Appl. 143 (1996), 4, 7 Zbl 0867.93022
.

Files

Files Size Format View
Kybernetika_37-2001-4_1.pdf 1.264Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo