Previous |  Up |  Next

Article

Title: On nonlinear equivalence and backstepping observer (English)
Author: Leon, J. de
Author: Souleiman, I.
Author: Glumineau, A.
Author: Schreier, G.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 5
Year: 2001
Pages: [521]-546
Summary lang: English
.
Category: math
.
Summary: An observer design based on backstepping approach for a class of state affine systems is proposed. This class of nonlinear systems is determined via a constructive algorithm applied to a general nonlinear Multi Input–Multi Output systems. Some examples are given in order to illustrate the proposed methodology. (English)
Keyword: design
Keyword: nonlinear system
Keyword: multi-input–multi-output system
Keyword: backstepping approach
Keyword: state affine systems
Keyword: nonlinear equivalence
MSC: 93B07
MSC: 93B51
MSC: 93C10
idZBL: Zbl 1265.93034
idMR: MR1877072
.
Date available: 2009-09-24T19:41:29Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135425
.
Reference: [1] Besançon G., Bornard, G., Hammouri H.: Observers synthesis for a class of nonlinear control systems.European J. Control (1996), 176–192 10.1016/S0947-3580(96)70043-2
Reference: [2] Busawon K., Farza, M., Hammouri H.: Observers’ synthesis for a class of nonlinear systems with application to state and parameter estimation in bioreactors.In: Proc. 36th IEEE Conference on Decision and Control, San Diego, California 1997
Reference: [3] Busawon K., Saif M.: An Observer for a class disturbance driven nonlinear systems.Appl. Math. Lett. 11 (1998), 6, 109–113 MR 1647133, 10.1016/S0893-9659(98)00111-6
Reference: [4] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems – An algebraic setting.Springer–Verlag, Berlin 1999 Zbl 0920.93002, MR 1687965
Reference: [5] Diop S.: Elimination in control theory.Math. Control Signals Systems 4 (1991), 17–32 Zbl 0727.93025, MR 1082853, 10.1007/BF02551378
Reference: [6] Diop S., Fliess M.: On nonlinear observability.In: Proc. European Control Conference (ECC’91), Grenoble 1991
Reference: [7] Gauthier J. P., Bornard G.: Observability for any $u(t)$ of a class of nonlinear systems.IEEE Trans. Automat. Control 26 (1981), 922–926 Zbl 0553.93014, MR 0635851, 10.1109/TAC.1981.1102743
Reference: [8] Gauthier J. P., Kupka I.: Observability and observers for nonlinear systems.SIAM J. Control Optim. 32 (1994), 4, 974–994 Zbl 0802.93008, MR 1280224, 10.1137/S0363012991221791
Reference: [9] Glumineau A., Moog C. H., Plestan F.: New algebro-geometric conditions for the linearization by input-output injection.IEEE Trans. Automat. Control 41 (1996), 598–603 Zbl 0851.93018, MR 1385333, 10.1109/9.489283
Reference: [10] Hammouri H., Gauthier: Global time varying linearization up to output injection.SIAM J. Control Optim. 30 (1992), 1295–1310 Zbl 0771.93033, MR 1185623, 10.1137/0330068
Reference: [11] Hammouri H., Morales J. De Leon: Observer Synthesis for state affine systems.In: Proc. 29th IEEE Conference on Decision and Control, Honolulu 1990, pp. 784–785
Reference: [12] Kang W., Krener A. J.: Nonlinear asymptotic observer design: A backstepping approach.In: AFOSR Workshop on Dynamics Systems and Control, Pasadena, California 1998
Reference: [13] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers.Systems Control Lett. 3 (1983), 47–52 Zbl 0524.93030, MR 0713426
Reference: [14] López–M. V., Morales, J. de Léon, Glumineau A.: Transformation of nonlinear systems into state affine control systems and observer synthesis.In: IFAC CSSC, Nantes 1998, pp. 771–776
Reference: [15] López–M. V., Plestan, F., Glumineau A.: Linearization by completely generalized input-output injection.Kybernetika 35 (1999), 6, 793–802 MR 1747977
Reference: [16] Plestan F., Glumineau A.: Linearization by generalized input output injection.Systems Control Lett. 31 (1997), 115–128 Zbl 0901.93013, MR 1461807, 10.1016/S0167-6911(97)00025-X
Reference: [17] Souleiman I., Glumineau A.: Constructive transformation of nonlinear systems into state affine MIMO form and nonlinear observers.Internat. J. Control. Submitted
Reference: [18] Nijmeijer H., (eds.) T. I. Fossen: New Directions in Nonlinear Observer Design (Lecture Notes in Control and Inform.Sciences 244). Springer–Verlag, Berlin 1999 MR 1699373
Reference: [19] Schaft A. J. Van der: Representing a nonlinear state space system as a set of higher order differential equations in the inputs and outputs.Systems Control Lett. 12 (1989), 151–160 MR 0985565, 10.1016/0167-6911(89)90008-X
Reference: [20] Xia X. H., Gao W. B.: Nonlinear observer design by observer error linearization.SIAM J. Control Optim. 1 (1989), 199–216 Zbl 0667.93014, MR 0980230
.

Files

Files Size Format View
Kybernetika_37-2001-5_1.pdf 2.915Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo