Previous |  Up |  Next

Article

Title: Prognosis and optimization of homogeneous Markov message handling networks (English)
Author: Boček, Pavel
Author: Feglar, Tomáš
Author: Janžura, Martin
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 6
Year: 2001
Pages: [625]-646
Summary lang: English
.
Category: math
.
Summary: Message handling systems with finitely many servers are mathematically described as homogeneous Markov networks. For hierarchic networks is found a recursive algorithm evaluating after finitely many steps all steady state parameters. Applications to optimization of the system design and management are discussed, as well as a program product 5P (Program for Prognosis of Performance Parameters and Problems) based on the presented theoretical conclusions. The theoretic achievements as well as the practical applicability of the program are illustrated on a hypermarket network with 34 servers at different locations of the Czech Republic. (English)
Keyword: message handling system
Keyword: Markov network
Keyword: optimization
Keyword: recursive algorithm
MSC: 60J20
MSC: 60J27
MSC: 62M05
MSC: 68M12
MSC: 90B15
MSC: 90B18
idZBL: Zbl 1265.60140
idMR: MR1936992
.
Date available: 2009-09-24T19:42:25Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135433
.
Reference: [1] Darbellay G. A., Vajda I.: Entropy expressions for multivariate continuous distributions.IEEE Trans. Inform. Theory 46 (2000), 709–712 Zbl 0996.94018, MR 1749003, 10.1109/18.825848
Reference: [2] Esteban M., Castellanos M., Morales, D., Vajda I.: A comparative study of the normality tests based on sample entropies.Comm. Statist. Simulation Comput., to appear
Reference: [3] Higginbottom G. N.: Performance Evaluation of Communication Networks.Artech House, Boston 1998 Zbl 0913.68003
Reference: [4] Janžura M., Boček P.: Stochastic Methods of Prognosis of Parameters in Data Networks (in Czech).Research Report No. 1981, Institute of Information Theory and Automation, Prague 2000
Reference: [5] Menéndez M., Morales D., Pardo, L., Vajda I.: Inference about stationary distributions of Markov chains based on divergences with observed frequencies.Kybernetika 35 (1999), 265–280 MR 1704667
Reference: [6] Menéndez M., Morales D., Pardo, L., Vajda I.: Minimum disparity estimators for discrete and continuous models.Appl. Math. 46 (2001), 401–420 Zbl 1059.62001, MR 1865516, 10.1023/A:1013764612571
Reference: [7] Menéndez M., Morales D., Pardo, L., Vajda I.: Approximations to powers of $\phi $-disparity goodness of fit tests.Comm. Statist. Theory Methods 30 (2001), 105–134 Zbl 1008.62540, MR 1862592, 10.1081/STA-100001562
Reference: [8] Morales D., Pardo L., Pardo M. C., Vajda I.: Extension of the Wald statistics to models with dependent observations.Metrika 52 (2000), 97–113 MR 1811265, 10.1007/s001840000060
Reference: [9] Nelson R.: Probability, Stochastic Processes, and Queueing Theory.Springer, New York 1995 Zbl 0839.60002, MR 1340628
Reference: [10] Norris J. R.: Markov Chains.Cambridge University Press, Cambridge 1997 Zbl 1189.60152, MR 1600720
Reference: [11] Pardo M. C., Pardo, L., Vajda I.: Consistent tests of homogeneity for independent samples from arbitrary models, submitte.
Reference: [12] Pattavina A.: Switching Theory: Architecture and Performance in Broadbard ATM Networks.Wiley, New York 1998
Reference: [13] Dijk N. M. van: Queueing Networks and Product Forms.A System Approach. Wiley, New York 1993 MR 1266845
Reference: [14] Walrand J.: Introduction to Queueing Networks.Prentice–Hall, Englewood Cliffs, N.J. 1988 Zbl 0854.60089
Reference: [15] Whittle P.: Systems in Stochastic Equilibrium.Wiley, Chichester 1986 Zbl 0665.60107, MR 0850012
.

Files

Files Size Format View
Kybernetika_37-2001-6_1.pdf 3.312Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo