Previous |  Up |  Next

Article

Title: Some invariant test procedures for detection of structural changes; behavior under alternatives (English)
Author: Hušková, Marie
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 37
Issue: 6
Year: 2001
Pages: [669]-684
Summary lang: English
.
Category: math
.
Summary: Regression- and scale-invariant $M$-test procedures for detection of structural changes in linear regression model was developed and their limit behavior under the null hypothesis was studied in Hušková [9]. In the present paper the limit behavior under local alternatives is studied. More precisely, it is shown that under local alternatives the considered test statistics have asymptotically normal distribution. (English)
Keyword: linear regression
Keyword: $M$-test procedure
Keyword: asymptotics
MSC: 62F05
MSC: 62J05
idZBL: Zbl 1264.62012
idMR: MR1936994
.
Date available: 2009-09-24T19:42:39Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135435
.
Reference: [1] Billingsley P.: Convergence of Probability Measures.Wiley, New York 1968 Zbl 0944.60003, MR 0233396
Reference: [2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics.Wiley, New York 1993 MR 1215046
Reference: [3] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis.Wiley, New York 1997 MR 2743035
Reference: [4] Horváth L.: Detecting changes in linear regressions.Statistics 26 (1995), 189–208 Zbl 0812.62074, MR 1365672, 10.1080/02331889508802489
Reference: [5] Huber P. J.: Robust Statistics.Wiley, New York 1981 MR 0606374
Reference: [6] Hušková M.: Some sequential procedures based on regression rank scores.Nonparametric Statistics 3 (1994), 285–298 MR 1291550, 10.1080/10485259408832588
Reference: [7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes.In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 Zbl 0933.62040, MR 1456754
Reference: [8] Hušková M.: $L_1$-test procedures for detection of change.In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70 Zbl 0935.62052
Reference: [9] Hušková M.: Some invariant test procedures for detection of structural changes.Kybernetika 36 (2000), 401–414 MR 1830646
Reference: [10] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times.Stoch. Process. Appl. 33 (1989), 309–323 Zbl 0679.62056, MR 1030215, 10.1016/0304-4149(89)90045-8
Reference: [11] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models.Statist. Decisions, Suplement Issue 1 (1984), 31–41 Zbl 0586.62042, MR 0785200
Reference: [12] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models.In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122 MR 1311932
Reference: [13] Ploberger W., Krämer, W., Kontrus K.: A new test for structural stability in linear regression model.J. Econometrics 40 (1989), 307–318 MR 0994952, 10.1016/0304-4076(89)90087-0
Reference: [14] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes.J. Amer. Statist. Assoc. 55 (1960), 324–330 MR 0114269, 10.1080/01621459.1960.10482067
Reference: [15] Víšek T.: Detection of Changes in Econometric Models.Ph.D. Dissertation. Charles University, Prague 1999
Reference: [16] Worsley K. J.: Testing for a two-phase multiple regression.Technometrics 25 (1983), 35–42 Zbl 0508.62061, MR 0694210, 10.1080/00401706.1983.10487817
.

Files

Files Size Format View
Kybernetika_37-2001-6_3.pdf 1.870Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo