Previous |  Up |  Next

Article

Title: Discrete-time symmetric polynomial equations with complex coefficients (English)
Author: Henrion, Didier
Author: Ježek, Jan
Author: Šebek, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 2
Year: 2002
Pages: [113]-139
Summary lang: English
.
Category: math
.
Summary: Discrete-time symmetric polynomial equations with complex coefficients are studied in the scalar and matrix case. New theoretical results are derived and several algorithms are proposed and evaluated. Polynomial reduction algorithms are first described to study theoretical properties of the equations. Sylvester matrix algorithms are then developed to solve numerically the equations. The algorithms are implemented in the Polynomial Toolbox for Matlab. (English)
Keyword: polynomial equation
Keyword: Sylvester matrix
Keyword: dynamical system
MSC: 15A24
MSC: 65F30
MSC: 68T20
MSC: 93B40
idZBL: Zbl 1265.93102
idMR: MR1916447
.
Date available: 2009-09-24T19:44:28Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135451
.
Reference: [1] Barmish B. R.: New Tools for Robustness of Linear Systems.MacMillan, New York 1994 Zbl 1094.93517
Reference: [2] Bose N. K., Shi Y. Q.: A simple general proof of Kharitonov’s generalized stability criterion.IEEE Trans. Circuits and Systems 34 (1987), 1233–1237 Zbl 0643.93057, MR 0908562, 10.1109/TCS.1987.1086055
Reference: [3] Golub G. H., Loan C. F. Van: Matrix Computations.Third edition. Johns Hopkins University Press, Baltimore, Maryland 1996 MR 1417720
Reference: [4] Henrion D., Šebek M.: An efficient numerical method for the discrete-time symmetric matrix polynomial equation.IEE Proceedings, Control Theory and Applications 145 (1998), 5, 443–448
Reference: [5] Henrion D.: Reliable Algorithms for Polynomial Matrices.Ph. D. Thesis, Control Theory Department, Institute of Information Theory and Automation, Prague 1998
Reference: [6] Henrion D., Šebek M.: Symmetric matrix polynomial equation: Interpolation results.Automatica 34 (1998), 7, 811–824 Zbl 0935.65042, MR 1635080, 10.1016/S0005-1098(98)00029-6
Reference: [7] Henrion D., Šebek M.: Reliable numerical methods for polynomial matrix triangularization.IEEE Trans. Automat. Control 44 (1999), 3, 497–508 Zbl 0956.65036, MR 1680274, 10.1109/9.751344
Reference: [8] Higham N. J.: Accuracy and Stability of Numerical Algorithms.SIAM, Philadelphia 1996 Zbl 1011.65010, MR 1368629
Reference: [9] Ježek J.: Conjugated and symmetric polynomial equations.Part II: Discrete-time systems. Kybernetika 19 (1983), 3, 196–211 Zbl 0556.93044, MR 0716649
Reference: [10] Ježek J., Kučera V.: Efficient algorithm for matrix spectral factorization.Automatica 21 (1985), 6, 663–669 MR 0818806, 10.1016/0005-1098(85)90040-8
Reference: [11] Ježek J.: Symmetric matrix polynomial equations.Kybernetika 22 (1986), 1, 19–30 Zbl 0599.93008, MR 0839342
Reference: [12] Ježek J., Hunt K. J.: Coupled polynomial equations of LQ control synthesis and an algorithm for solution.Internat. J. Control 58 (1993), 5, 1155–1167 MR 1242443, 10.1080/00207179308923047
Reference: [13] Kailath T.: Linear Systems.Prentice Hall, Englewood Cliffs, N.J. 1980 Zbl 0870.93013, MR 0569473
Reference: [14] Kučera V.: Discrete Linear Control: The Polynomial Approach.Wiley, Chichester 1979 MR 0573447
Reference: [15] Kučera V.: Analysis and Design of Discrete Linear Control Systems.Prentice Hall, London 1991 Zbl 0762.93060, MR 1182311
Reference: [16] Lindbom L.: A Wiener Filtering Approach to the Design of Tracking Algorithms with Applications to Mobile Radio Communications.Ph. D. Thesis, Signal Processing Group, Department of Technology, Uppsala University, Sweden 1995
Reference: [17] MacChi O.: Adaptive Processing: the Least Mean Squares Approach and Applications in Transmission.Wiley, Chichester 1995
Reference: [18] Proakis J. G., Salehi M.: Communication Systems Engineering.Prentice Hall, Englewood Cliffs, N.J. 1994 Zbl 0864.94001
Reference: [19] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent Progress in Polynomial Methods and Polynomial Toolbox for Matlab Version 2.0. In: Proc. Conference on Decision and Control, IEEE, Tampa 1998, pp. 3661–3668.See also the web page www.polyx.com
Reference: [20] Söderström T., Ježek, J., Kučera V.: An efficient and versatile algorithm for computing the covariance function of an ARMA process.IEEE Trans. Signal Processing 46 (1998), 6, 1591–1600 Zbl 1028.93031, MR 1667256, 10.1109/78.678473
Reference: [21] Willems J. C., Trentelman H. L.: On quadratic differential forms.SIAM J. Control Optim. 36 (1998), 5, 1703–1749 Zbl 0912.93006, MR 1626821, 10.1137/S0363012996303062
.

Files

Files Size Format View
Kybernetika_38-2002-2_1.pdf 3.089Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo