Previous |  Up |  Next

Article

Title: Optimal decentralized control design with disturbance decoupling (English)
Author: Voulgaris, Petros G.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 2
Year: 2002
Pages: [197]-208
Summary lang: English
.
Category: math
.
Summary: In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal $\ell _1$ sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows. (English)
Keyword: disturbance decoupling
Keyword: optimal performance
Keyword: $\ell _1$ optimal control
MSC: 90C90
MSC: 93A14
MSC: 93B51
MSC: 93C73
idZBL: Zbl 1265.93110
idMR: MR1916451
.
Date available: 2009-09-24T19:44:59Z
Last updated: 2015-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/135455
.
Reference: [1] Boyd S. P., Barratt C. H.: Linear Controller Design: Limits of Performance.Prentice Hall, Englewood Cliffs, N. J. 1991 Zbl 0748.93003
Reference: [2] Conway J. B.: A Course in Functional Analysis.Springer–Verlag, New York 1990 Zbl 0706.46003, MR 1070713
Reference: [3] Cuhna N. O. Da, Polak E.: Constrained minimization under vector valued criteria in finite dimensional spaces.J. Math. Anal. Appl. 19 (1967), 103–124 MR 0216346, 10.1016/0022-247X(67)90025-X
Reference: [4] Francis B. A.: A Course in ${H}_\infty $ Control Theory.(Lecture Notes in Control and Information Sciences 88.) Springer–Verlag, New York 1987 MR 0932459
Reference: [5] Dahleh M. A., Diaz-Bobillo I. J.: Control of Uncertain Systems: A Linear Programming Approach.Prentice Hall, Englewood Cliffs, N. J. 1995 Zbl 0838.93007
Reference: [6] Gundes A. N., Desoer C. A.: Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators.Springer–Verlag, Heidelberg 1990 MR 1055359
Reference: [7] Goodwin G. C., Seron M. M., Salgado M. E.: ${\mathcal {H}}_2$ design of decentralized controllers.In: Proc. American Control Conference, San Diego 1999
Reference: [8] Khammash M.: Solution of the $\ell _1$ optimal control problem without zero interpolation.In: Proc. Control Decision Conference, Kobe 1996; IEEE Trans. Automat. Control, to appear
Reference: [9] Kučera V.: Discrete Linear Control.Wiley, Chichester 1979 Zbl 0762.93060, MR 0573447
Reference: [10] Linnemann A., Wang Q.: Block decoupling with stability by unity output feedback-solution and performance limitations.Automatica 29 (1993), 735–744 Zbl 0771.93072, MR 1217792, 10.1016/0005-1098(93)90067-4
Reference: [11] Salapaka M. V., Khammash M., Dahleh M.: Solution of MIMO ${\mathcal {H}}_2/\ell _1$ problem without zero interpolation.In: Proc. Control Decision Conference, San Diego 1997
Reference: [12] Ünyelioģlu K. A., Özgüner U.: ${\mathcal {H}}_\infty $ sensitivity minimization using decentralized feedback: 2-input 2-output systems.Systems Control Lett. (1994), 99–109 MR 1261849
Reference: [13] Qi X., Khammash M. H., Salapaka M. V.: Optimal controller synthesis with multiple objectives.In: Proc. 2001 American Control Conference, Arlington 2001, pp. 2730–2735
Reference: [14] Qi X., Khammash M. H., Salapaka M. V.: A Matlab package for multiobjective control synthesis.In: IEEE Conference on Decision and Control 2001, to appear
Reference: [15] Quek C. K., Loh A. P.: Robust decoupling of discrete systems using $\ell _1$ optimization.IEEE Trans. Automat. Control 42 (1997), 549–553 MR 1442592, 10.1109/9.566667
Reference: [16] Woude J. W. van der: Almost noninteracting control by measurement feedback.Systems Control Lett. 9 (1987), 7–16 MR 0894721, 10.1016/0167-6911(87)90003-X
Reference: [17] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener-Hopf design of optimal controllers.Part 2: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 319–338 Zbl 0339.93035, MR 0446637, 10.1109/TAC.1976.1101223
.

Files

Files Size Format View
Kybernetika_38-2002-2_5.pdf 1.416Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo