Previous |  Up |  Next

Article

Title: Aggregation operators and fuzzy measures on hypographs (English)
Author: Vivona, Doretta
Author: Divari, Maria
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [245]-257
Summary lang: English
.
Category: math
.
Summary: In a fuzzy measure space we study aggregation operators by means of the hypographs of the measurable functions. We extend the fuzzy measures associated to these operators to more general fuzzy measures and we study their properties. (English)
Keyword: aggregation operator
Keyword: hypograph
MSC: 03E72
MSC: 28E10
idZBL: Zbl 1265.28043
idMR: MR1944307
.
Date available: 2009-09-24T19:45:37Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135461
.
Reference: [1] Benvenuti P., Vivona D.: Comonotone aggregation operators.Rend. Mat. 20 (2000), 323–336 Zbl 0999.28011, MR 1823104
Reference: [2] Benvenuti P., Vivona, D., Divari M.: Characterization of comonotone aggregation operators.In: Proc. EUSFLAT, Palma de Mallorca 1999, pp. 367–370
Reference: [3] Benvenuti P., Vivona, D., Divari M.: General integral and fuzzy measures on subgraphs.In: VIII. IPMU, Madrid 2000, vol. II, pp. 1173–1176
Reference: [4] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures.In: V. International FSTA Conference, Liptovský Mikuláš 2000, pp. 40–44 Zbl 1113.68507, MR 1821988
Reference: [5] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures.Internat. J. Uncertainty, Fuzziness and Knowledge–Based System IX,2 (2001), 197–204 Zbl 1113.68507, MR 1821988, 10.1142/S0218488501000739
Reference: [6] Birkhoff G.: Lattice Theory.Amer. Math. Soc., Providence, RI 1967 Zbl 0537.06001, MR 0227053
Reference: [7] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A Review on Aggregation Operators.University of Alcalá, Alcalá de Henares, Madrid 2001
Reference: [8] Imaoka H.: On a subjective evaluation model by a generalized fuzzy integral.Internat. J. Uncertainty, Fuzziness and Knowledge–Based Systems 5 (1997), 517–529 Zbl 1232.68132, MR 1480749, 10.1142/S0218488597000403
Reference: [9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [10] Klement E. P., Mesiar, R., Pap E.: A geometric approach to aggregation.In: Proc. EUSFLAT 2001, Leicester 2001, pp. 466–469
Reference: [11] Mesiar R., Komorníková M.: Aggregation operators.In: Proc. Prim. 36, XI Conference on Applied Mathematics, Novi Sad 1997, pp. 173–211 Zbl 0960.03045, MR 1492233
Reference: [12] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary.Ann. Math. 65 (1957), 117–143 MR 0084103, 10.2307/1969668
Reference: [13] Vivona D.: Mathematical aspects of the theory of measures of fuzziness.Mathware and Math. Soft Comp. 3 (1996), 211–224 Zbl 0859.04007, MR 1414268
Reference: [14] Wang Z., Klir G. J.: Fuzzy Measure Theory.Plenum Press, New York 1992 Zbl 0812.28010, MR 1212086
Reference: [15] Yager R. R.: Aggregation operators and fuzzy systems modeling.Fuzzy Sets and Systems 67 (1994), 129–146 Zbl 0845.93047, MR 1302575, 10.1016/0165-0114(94)90082-5
.

Files

Files Size Format View
Kybernetika_38-2002-3_3.pdf 1.068Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo