Previous |  Up |  Next

Article

Title: Validation sets in fuzzy logics (English)
Author: Horčík, Rostislav
Author: Navara, Mirko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [319]-326
Summary lang: English
.
Category: math
.
Summary: The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics. (English)
Keyword: validation set
Keyword: $S$-fuzzy logic
Keyword: $R$-fuzzy logic
MSC: 03B52
idZBL: Zbl 1265.03019
idMR: MR1944312
.
Date available: 2009-09-24T19:46:14Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135466
.
Reference: [1] Butnariu D., Klement E. P., Zafrany S.: On triangular norm-based propositional fuzzy logics.Fuzzy Sets and Systems 69 (1995), 241–255 Zbl 0844.03011, MR 1319229, 10.1016/0165-0114(94)00172-4
Reference: [2] Chang C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490 Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning.(Trends in Logic 7.) Kluwer, Dordrecht 1999 Zbl 0937.06009, MR 1786097
Reference: [4] Dubois D., Prade H.: A review of fuzzy set aggregation connectives.Inform. Sci. 36 (1985), 85–121 Zbl 0582.03040, MR 0813766, 10.1016/0020-0255(85)90027-1
Reference: [5] Esteva F., Godo L., Hájek, P., Navara M.: Residuated fuzzy logics with an involutive negation.Arch. Math. Logic 39 (2000), 103–124 MR 1742377, 10.1007/s001530050006
Reference: [6] Gehrke M., Walker, C., Walker E. A.: DeMorgan systems on the unit interval.Internat. J. Intelligent Syst. 11 (1996), 733–750 Zbl 0865.04005, 10.1002/(SICI)1098-111X(199610)11:10<733::AID-INT2>3.0.CO;2-#
Reference: [7] Gödel K.: Zum intuitionistischen Aussagenkalkül.Anz. Österreich. Akad. Wiss. Math.–Natur. Kl. 69 (1932), 65–66
Reference: [8] Gottwald S.: Mehrwertige Logik.Akademie–Verlag, Berlin 1989 Zbl 0714.03022, MR 1117450
Reference: [9] Gottwald S.: Fuzzy Sets and Fuzzy Logic.Foundations of Application – from a Mathematical Point of View. Vieweg, Braunschweig – Wiesbaden 1993 Zbl 1088.03024, MR 1218623
Reference: [10] Hájek P.: Metamathematics of Fuzzy Logic.(Trends in Logic 4.) Kluwer, Dordrecht 1998 Zbl 1007.03022, MR 1900263
Reference: [11] Hájek P., Godo, L., Esteva F.: A complete many-valued logic with product-conjunction.Arch. Math. Logic 35 (1996), 191–208 Zbl 0848.03005, MR 1385789, 10.1007/BF01268618
Reference: [12] Hekrdla J., Klement, E.š P., Navara M.: Two approaches to fuzzy propositional logics.Multiple–valued Logic, accepted Zbl 1043.03017
Reference: [13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.(Trends in Logic 8.) Kluwer, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [14] Klement E. P., Navara M.: Propositional fuzzy logics based on Frank t-norms: A comparison.In: Fuzzy Sets, Logics and Reasoning about Logics (D. Dubois, E. P. Klement and H. Prade, eds., Applied Logic Series 15), Kluwer, Dordrecht 1999, pp. 17–38 Zbl 0947.03035, MR 1796598
Reference: [15] Klement E. P., Navara M.: A survey on different triangular norm-based fuzzy logics.Fuzzy Sets and Systems 101 (1999), 241–251 Zbl 0945.03032, MR 1676917
Reference: [16] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [17] Łukasiewicz J.: Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls.Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930), 51–77
Reference: [18] Navara M.: Satisfiability in fuzzy logics.Neural Network World 10 (2000), 845–858
Reference: [19] Navara M.: Product Logic is Not Compact.Research Report No. CTU–CMP–2001–09, Center for Machine Perception, Czech Technical University, Prague 2001
Reference: [20] Nguyen H. T., Walker E.: A First Course in Fuzzy Logic.CRC Press, Boca Raton 1997 Zbl 1083.03031, MR 1404930
Reference: [21] Novák V.: On the syntactico-semantical completeness of first-order fuzzy logic.Part I – Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154
Reference: [22] Pedrycz W.: Fuzzy relational equations with generalized connectives and their applications.Fuzzy Sets and Systems 10 (1983), 185–201 Zbl 0525.04004, MR 0705207
Reference: [23] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, Amsterdam 1983 Zbl 0546.60010, MR 0790314
Reference: [24] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
Kybernetika_38-2002-3_8.pdf 1.124Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo