Previous |  Up |  Next

Article

Title: Poles and zeroes of nonlinear control systems (English)
Author: Pommaret, Jean-François
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 5
Year: 2002
Pages: [609]-615
Summary lang: English
.
Category: math
.
Summary: During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial explicit examples. (English)
Keyword: pole
Keyword: zero
Keyword: nonlinear control system
MSC: 93B25
MSC: 93B55
MSC: 93B60
MSC: 93C10
idZBL: Zbl 1265.93117
idMR: MR1966949
.
Date available: 2009-09-24T19:49:12Z
Last updated: 2015-03-25
Stable URL: http://hdl.handle.net/10338.dmlcz/135490
.
Reference: [1] Bourbaki N.: Algèbre Commutative.Chap. I–IV. Masson, Paris 1985 Zbl 1107.13002
Reference: [2] Bourlès H., Fliess M.: Finite poles and zeros of linear systems: an intrinsic approach.Internat. J. Control 68 (1997), 4, 897–922 Zbl 1034.93009, MR 1689711, 10.1080/002071797223398
Reference: [3] Gerdt V. P., Blinkov Y. A.: Minimal involutive bases.Math. Comput. Simulations 45 (1998), 543–560 Zbl 1017.13501, MR 1627130, 10.1016/S0378-4754(97)00128-6
Reference: [4] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry.Birkhäuser, Basel 1985 Zbl 0563.13001, MR 0789602
Reference: [5] Maisonobe P., Sabbah C.: D-Modules Cohérents et Holonomes.Travaux en Cours, 45, Hermann, Paris 1993 Zbl 0824.00033, MR 1603676
Reference: [6] Matsumura H.: Commutative Ring Theory.(Cambridge Studies in Advanced Mathematics 8.) Cambridge University Press, Cambridge 1986 Zbl 0666.13002, MR 0879273
Reference: [7] Pommaret J.-F.: Controllability of nonlinear multidimensional control.In: Nonlinear Control in the Year 2000, Proceedings NCN 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer, Paris 2000 Zbl 1127.93334
Reference: [9] Pommaret J.-F., Quadrat A.: Algebraic analysis of linear multidimensional control systems.IMA J. Math. Control Inform. 16 (1999), 275–297 Zbl 1158.93319, MR 1706658, 10.1093/imamci/16.3.275
Reference: [10] Pommaret J.-F., Quadrat A.: Localization and parametrization of linear multidimensional control systems.Systems Control Lett. 37 (1999), 247–260 Zbl 0948.93016, MR 1751255, 10.1016/S0167-6911(99)00030-4
Reference: [11] Sain M. K., Schrader C. B.: Research on systems zeros: a survey.Internat. J. Control 50 (1989), 4, 1407–1433 MR 1028424, 10.1080/00207178908953438
Reference: [12] Wood J., Oberst, U., Owens D.: A behavioural approach to the pole structure of 1D and $n$D linear systems.SIAM J. Control Optim. 38 (2000), 2, 627–661 MR 1741156, 10.1137/S036301299733213X
.

Files

Files Size Format View
Kybernetika_38-2002-5_9.pdf 841.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo