Previous |  Up |  Next

Article

Title: Artificial neural networks in time series forecasting: a comparative analysis (English)
Author: Allende, Héctor
Author: Moraga, Claudio
Author: Salas, Rodrigo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 6
Year: 2002
Pages: [685]-707
Summary lang: English
.
Category: math
.
Summary: Artificial neural networks (ANN) have received a great deal of attention in many fields of engineering and science. Inspired by the study of brain architecture, ANN represent a class of non-linear models capable of learning from data. ANN have been applied in many areas where statistical methods are traditionally employed. They have been used in pattern recognition, classification, prediction and process control. The purpose of this paper is to discuss ANN and compare them to non-linear time series models. We begin exploring recent developments in time series forecasting with particular emphasis on the use of non-linear models. Thereafter we include a review of recent results on the topic of ANN. The relevance of ANN models for the statistical methods is considered using time series prediction problems. Finally we construct asymptotic prediction intervals for ANN and show how to use prediction intervals to choose the number of nodes in the ANN. (English)
Keyword: artificial neural network
Keyword: non-linear time series model
Keyword: prediction
MSC: 62M10
MSC: 62M20
MSC: 62M45
MSC: 68T05
MSC: 82C32
idZBL: Zbl 1265.62011
idMR: MR1954954
.
Date available: 2009-09-24T19:49:52Z
Last updated: 2015-03-26
Stable URL: http://hdl.handle.net/10338.dmlcz/135496
.
Reference: [1] Allende H., Galbiati J.: Robust test in time series model.J. Interamerican Statist. Inst. 1 (1996), 48. 35–79 MR 1648377
Reference: [2] Allende H., Heiler S.: Recursive generalized M-estimates for autoregressive moving average models.J. Time Ser. Anal. 13 (1992), 1–18 Zbl 0850.62666, MR 1149267, 10.1111/j.1467-9892.1992.tb00091.x
Reference: [3] Anderson B., Moore J.: Optimal Filtering.Prentice Hall, Englewood Cliffs, N.J. 1979 Zbl 1191.93133
Reference: [4] Baxt W. G.: Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion.Neural Computational 2 (1990), 480–489 10.1162/neco.1990.2.4.480
Reference: [5] Benitez J. M., Castro J. L., Requena J.: Are neural network black boxes? IEEE Trans.Neural Networks 8 (1997), 1156–1163 10.1109/72.623216
Reference: [6] Beran J.: Statistics for Long-memory Processes.Chapman and Hall, London 1994 Zbl 0869.60045, MR 1304490
Reference: [7] Bowerman B. L., O’Connell R. T.: Forecasting and time series: an applied approach.Third edition. Duxbury Press, 1993 Zbl 0779.62087, MR 0635926
Reference: [8] Box G. E. P., Jenkins G. M., Reinsel G. C.: Time Series Analysis, Forecasting and Control.Third edition. Prentice Hall, Englewood Cliffs, N.J. 1994 Zbl 1154.62062, MR 1312604
Reference: [9] Breiman L., Friedman J., Olshen, R., Stone C. J.: Classification and Regression Trees.Belmont, C. A. Wadsworth, 1984 Zbl 0541.62042, MR 0726392
Reference: [10] Brockwell P. J., Davis R. A.: Time Series Theory and Methods.Springer Verlag, New York 1991 Zbl 1169.62074, MR 1093459
Reference: [11] Brown R. G.: Smoothing, Forecasting and Prediction of Discrete Time Series.Prentice Hall, Englewood Cliffs, N.J. 1962 Zbl 0192.25606
Reference: [12] Chatfield C.: Forecasting in the 1990s.Statistician 4 (1997), 46, 461–473
Reference: [13] Cheng B., Titterington D. M.: Neural networks: review from a statistical perspective.Statist. Sci. 1 (1994), 2–54 MR 1278678, 10.3902/jnns.1.e2
Reference: [14] Connor J. T., Martin R. D.: Recurrent neural networks and robust time series prediction.IEEE Trans. Neural Networks 2 (1994), 5, 240–253 10.1109/72.279188
Reference: [15] Crato N., Ray B. K.: Model selection and forecasting for long-range dependent processes.Internat. J. Forecasting 15 (1996), 107–125 10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D
Reference: [16] Fine T. L.: Feedforward Neural Network Methodology.Springer, New York 1999 Zbl 0963.68163, MR 1691898
Reference: [17] Flury B., Riedwyl H.: Multivariate Statistics: A Practical Approach.Chapman Hall, London 1990
Reference: [18] Friedman J. H.: Multivariate adaptive regression spline.Ann. Statist. 19 (1991), 1–141 MR 1091842, 10.1214/aos/1176347963
Reference: [19] Funahashi K. I.: On the approximate realization of continuous mappings by neural networks.Neural Networks 2 (1989), 183–192 10.1016/0893-6080(89)90003-8
Reference: [20] Han J., Moraga, C., Sinne S.: Optimization of feedforward neural networks.Engrg. Appl. Artificial Intelligence 2 (1996), 9, 109–119 10.1016/0952-1976(95)00001-1
Reference: [21] Hornik K., Stinchcombe, M., White H.: Multilayer feedforward networks are universal approximators.Neural Networks 2 (1989), 359–366 10.1016/0893-6080(89)90020-8
Reference: [22] Hristev R. M.: Artificial Neural Networks.Preprint of a book obtained via Internet from the author, 1998
Reference: [23] Hutchinson J. M.: A Radial Basis Function Approach to Financial Time Series Analysis.Ph.D. Thesis. Massachusetts Institute of Technology, 1994 MR 2716481
Reference: [24] Hwang J. T. G., Ding A. A.: Prediction for artificial neural networks.J. Amer. Statist. Assoc. 92 (1997), 438, 748–757 MR 1467864
Reference: [25] Lin J. L., Granger C. W.: Forecasting from non-linear models in practice.Internat. J. Forecasting 13 (1994), 1–9 10.1002/for.3980130102
Reference: [26] Lippmann R. P.: An introduction to computing with neural nets.IEEE ASSP Magazine (1997), 4–22
Reference: [27] Ljung G. M., Bax G. E. P.: On a measure of lack of fit in time series models.Biometrika 65 (1978), 297–303 10.1093/biomet/65.2.297
Reference: [28] McCullagh P., Nelder J. A.: Generalized Linear Models.Chapman Hall, London 1989 Zbl 0744.62098, MR 0727836
Reference: [29] Meditch J. S.: Stochastic Optimal linear Estimation and Control.MacGraw–Hill, New York 1969 Zbl 0269.93061
Reference: [30] Moody J. E., Utans J.: Architecture selection strategies for neural networks.In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995
Reference: [31] Moraga C.: Properties of parametric feedforward neural networks.In: XXIII Conferencia Latinoamericana de Informática, Valparaíso 1997, Vol. 2, pp. 861–870
Reference: [32] Pineda F. J.: Generalization of Backpropagation to recurrent and higher order networks.In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987
Reference: [33] Poli R., Cagnoni S., Coppini, G., Walli G.: A neural network expert system for diagnosing and treating hypertension.Computer (1991), 64–71
Reference: [34] Referes A. P. N., Zapranis A. D.: Neural model identification, variable selection and model adequacy.J. Forecasting 18 (1999), 299–322 10.1002/(SICI)1099-131X(199909)18:5<299::AID-FOR725>3.0.CO;2-T
Reference: [35] Reinsel G. C.: Elements of Multivariate Time Series Analysis.Springer Verlag, New York 1993 Zbl 1047.62078, MR 1238940
Reference: [36] Ripley B. D.: Statistical aspects of neural networks.In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf–Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993 Zbl 0825.68531, MR 1314652
Reference: [37] Sarle W. S.: Neural networks and statistical methods.In: Proc. of the 19th Anual SAS Users Group International Conference, 1994
Reference: [38] Smith J., Yadav S.: Forecasting cost incurred from unit differencing fractionally integrated processes.Internat. J. Forecasting 10 (1994), 507–514 10.1016/0169-2070(94)90019-1
Reference: [39] Stern H. S.: Neural networks in applied statistics.Technometrics 38 (1996), 3, 205–214 Zbl 0896.62098, MR 1411878, 10.1080/00401706.1996.10484497
Reference: [40] Rao T. Subba: On the theory of bilinear models.J. Roy. Statist. Soc. Ser. B 43 (1981), 244–255 MR 0626772
Reference: [41] Sussmann H. J.: Uniqueness of the weights for minimal feedforward nets with a given input-output map.Neural Networks 5 (1992), 589–593 10.1016/S0893-6080(05)80037-1
Reference: [42] Temme K. H., Heider, R., Moraga C.: Generalized neural networks for fuzzy modeling.In: Proc. Internat. Conference of European Society of Fuzzy Logic and Technology, EUSFLAT’99 Palma de Mallorca 1999
Reference: [43] Tong H.: Non-linear Time Series.Oxford University Press, Oxford 1990 Zbl 0835.62076
Reference: [44] Vapnik V.: The Nature of Statistical Learning Theory.Springer Verlag, Berlin 1995 Zbl 0934.62009, MR 1367965
Reference: [45] Vapnik V., Chervoneski A.: The necessary and sufficient conditions for consistency of the method of empirical risk minimization.Pattern Recognition Image Anal. 1 (1991), 284–305
Reference: [46] Waibel A., Hanazawa T., Hinton G., Shikano, K., Lang K. J.: Phoneme recognition using time delay neural networks.IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 324–329 10.1109/29.21701
Reference: [47] Wu F. Y., Yen K. K.: Application of neural network in regression analysis.In: Proc. 14th Annual Conference on Computers and Industrial Engineering, 1992
.

Files

Files Size Format View
Kybernetika_38-2002-6_2.pdf 3.569Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo