Previous |  Up |  Next

Article

Title: Blended $\phi$-divergences with examples (English)
Author: Kůs, Václav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 1
Year: 2003
Pages: [43]-54
Summary lang: English
.
Category: math
.
Summary: Several new examples of divergences emerged in the recent literature called blended divergences. Mostly these examples are constructed by the modification or parametrization of the old well-known phi-divergences. Newly introduced parameter is often called blending parameter. In this paper we present compact theory of blended divergences which provides us with a generally applicable method for finding new classes of divergences containing any two divergences $D_0$ and $D_1$ given in advance. Several examples of blends of well-known divergences are given. (English)
Keyword: divergences of probability distributions
Keyword: blended divergences
Keyword: statistical applications
MSC: 62B10
MSC: 62F35
MSC: 62F99
MSC: 62G35
MSC: 62G99
idZBL: Zbl 1243.62004
idMR: MR1980123
.
Date available: 2009-09-24T19:51:02Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135507
.
Reference: [1] Cressie N., Read T. R. C.: Multinomial goodness-of-fit tests.J. Roy. Statist. Soc. Ser. A 46 (1984), 440–464 Zbl 0571.62017, MR 0790631
Reference: [2] Kafka P., Österreicher F., Vincze I.: On powers of $f$-divergences defining a distance.Studia Sci. Math. Hungar. 26 (1991), 415–422 MR 1197090
Reference: [3] Kůs V.: Divergences and Generalized Score Functions in Statistical Inference.Ph.D. Thesis, Czech Technical University, Prague 1998
Reference: [4] Cam L. Le: Asymptotic Methods in Statistical Decision Theory.Springer, New York 1986 Zbl 0605.62002, MR 0856411
Reference: [5] Lindsay B. G.: Efficiency versus robustness.The case for minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081–1114 Zbl 0807.62030, MR 1292557, 10.1214/aos/1176325512
Reference: [6] Menéndez M., Morales D., Pardo, L., Vajda I.: Two approaches to grouping of data and related disparity statistics.Comm. Statist. A – Theory Methods 27 (1998), 609–633 Zbl 1126.62300, MR 1619038, 10.1080/03610929808832117
Reference: [7] Österreicher. F.: On a class of perimeter-type distances of probability distributions.Kybernetika 32 (1996), 389–393 Zbl 0897.60015, MR 1420130
Reference: [8] Park, Ch., Basu A., Basu S.: Robust minimum distance inference based on combined distances.Comm. Statist. B – Simulation Comput. 24 (1995), 653–673 Zbl 0850.62243, 10.1080/03610919508813265
Reference: [9] Read R. C., Cressie N. A. C.: Goodness-of-fit Statistics for Discrete Multivariate Data.Springer, Berlin 1988 Zbl 0663.62065, MR 0955054
Reference: [10] Vajda I.: Theory of Statistical Inference and Information.Kluwer, Boston 1989 Zbl 0711.62002
Reference: [11] Vajda I.: Information–Theoretic Methods in Statistics.Research Report No. 1834, ÚTIA, Academy of Sciences of the Czech Republic, Prague 1995
.

Files

Files Size Format View
Kybernetika_39-2003-1_4.pdf 1.492Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo