Previous |  Up |  Next

Article

Title: Approximations for the maximum of stochastic processes with drift (English)
Author: Berkes, István
Author: Horváth, Lajos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [299]-306
Summary lang: English
.
Category: math
.
Summary: If a stochastic process can be approximated with a Wiener process with positive drift, then its maximum also can be approximated with a Wiener process with positive drift. (English)
Keyword: drift
Keyword: Wiener process
Keyword: partial sums
MSC: 60F17
MSC: 60G17
idZBL: Zbl 1249.60075
idMR: MR1995734
.
Date available: 2009-09-24T19:54:01Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135532
.
Reference: [1] Chow Y. S., Hsiung A. C.: Limiting behavior of $ \max _{j \le n} S_j/j^\alpha $ and the first passage times in a random walk with positive drift.Bull. Inst. Math. Acad. Sinica 4 (1976), 35–44 MR 0407948
Reference: [2] Chow Y. S., Hsiung A. C., Yu K. F.: Limit theorems for a positively drifting process and its related first passage times.Bull. Inst. Math. Acad. Sinica 8 (1980), 141–172 Zbl 0441.60075, MR 0595527
Reference: [3] Komlós J., Major, P., Tusnády G.: An approximation of partial sums of independent R.V.’s and the sample D.F.I. Z. Wahrschein. Verw. Gebiete 32 (1975), 111–131 MR 0375412, 10.1007/BF00533093
Reference: [4] Komlós J., Major, P., Tusnády G.: An approximation of partial sums of independent R.V.’s and the sample D.F.I. Z. Wahrsch. Verw. Gebiete 34 (1976), 33–58 MR 0402883, 10.1007/BF00532688
Reference: [5] Major P.: The approximation of partial sums of independent R.V.’s. Z. Wahrsch. Verw. Gebiete 35 (1976), 213–220 Zbl 0338.60031, MR 0415743, 10.1007/BF00532673
Reference: [6] Teicher H.: A classical limit theorem without invariance or reflection.Ann. Probab. 1 (1973), 702–704 Zbl 0262.60013, MR 0350818, 10.1214/aop/1176996897
.

Files

Files Size Format View
Kybernetika_39-2003-3_6.pdf 1.177Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo